
 Contents
WadAuthor
Copyright © 1995,1996 Williston Consulting
All Rights Reserved

Welcome to the WadAuthor help file!    WadAuthor is intended to accommodate all levels of map design
experience.    Towards that end, novices looking for quick help should examine the getting started or tutorial
topics, while those of greater experience will probably benefit more from the reference.    I hope you enjoy using
WadAuthor as much as I enjoyed creating it.

What ’ s New?
Provides a detailed explanation of the changes from the previous release.

Getting Started
Provides important basic information and an introduction to using WadAuthor.    Also
provides instructions on accessing the step by step tutorial for creating a new map.

Reference
Provides detailed information for using WadAuthor.    A basic level of experience is
assumed for purposes of explanation.    If you do not understand something, please
consult the getting started section, the tutorial, or the glossary.

Registration
If you find WadAuthor useful, please examine this topic and register the product.   
Remember, only you can make shareware work!

Troubleshooting
When something doesn’t seem to work right, consult this topic for answers to common
problems and instructions for obtaining technical support.

About WadAuthor
Provides a release history along with some technical information about WadAuthor'’s
construction.

Credits And Thanks To...
Software is rarely written in a vacuum, and this product is no different.    Consult this
topic for a list of people who made important contributions.

For Help on Help, Press F1

 Glossary

A
Attribute An attribute is very similar to a property; it is a quality of something.    Things

and linedefs both have attributes which can affect their placement and behavior
at runtime.    Refer to the thing properties dialog or the linedef properties dialog
for more information.

B
Binary
space
partition

A binary space partition (BSP) is the output of a binary space partitioning
algorithm.    It divides a given space up into geometrically related pieces.   
Wadgames use a pre-calculated BSP tree to speed hidden surface removal at
runtime.

C
Cleric The cleric is one of the three available player classes in Hexen.    The cleric

features a nearly even balance of fighting and magical ability.

Configuratio
n file

Short for wadgame configuration file (WCF), this refers to a data file WadAuthor
uses to support different wadgames.    Refer to the configuration files topic for
more information.

Context
menu

Short for context-sensitive menu, this refers to a menu of options relevant to the
current selection.    Refer to the context menus topic for more information.

D
Deaf A thing having the deaf attribute will not attack the player without first “seeing”

him or being attacked.

DOOM The original best-selling shareware game largely responsible for initiating the
veritable slew of first-person perspective shoot-em-up games currently glutting
the market.

DOOM][DOOM][: Hell on Earth is the sequel to DOOM.

Door A door, in wadfile terms, is actually a sector with a particular set of properties
and linedefs.    A “normal” door consists of a single four-sided sector whose
ceiling height and floor height are identical; two of the sector’s linedefs should
also be two-sided, facing in opposite directions, and have their type set to
trigger a local door.    Click here to learn the simple method for creating a door.

E
Enemy This term refers to any thing object that can move of its own volition to attack

the player.

F
Fighter The fighter is one of the three available player classes in Hexen.    The fighter

features excellent strength and mobility while suffering from a lack of magical
ability.

G
H

Hall of
mirrors

This refers to the shimmering effect produced when a wadgame has no texture
for a given wall.    Click here for an explanation of why the hall of mirrors effect
happens.

Heretic One of the wadgames for which WadAuthor is designed.

Hexen One of the wadgames for which WadAuthor is designed.

I
ID Software ID Software makes some of the best state-of-the-art games in for the PC.    For

more information call 1-800-IDGAMES.

Impassable A linedef having the impassable attribute will not permit anything to cross.

J
K
L

Linedef A linedef defines a line segment between two vertexes.    Each linedef may have
one or two sidedefs associated with it based on whether the player can ever see
the back side.

M
Mage The mage is one of the three available player classes in Hexen.    The mage

features excellent magical ability while suffering from poor fighting skills.

Map A map is stored within a wadfile as a well-defined list of resources.    Each map
corresponds to a single “level” or “mission” when played.    Refer to the
understanding wadmaps topic for more information.

N
Node
building

When a map is saved, quite a bit of information must be generated before the
map can be used in a game.    This information is allows the game engine to
quickly choose which walls need to be drawn for the player, avoiding time
intensive computations at run-time.    This process is referred to as node
building.

O
O The fifteenth letter of the English alphabet.

Object Software and philosophy debates notwithstanding, this term refers to an object
within a wadmap.    An object is always one of the following types:    a thing,
vertex, linedef, sidedef, or sector.    Of these types, things, vertexes, linedefs,
and sectors may be directly manipulated from the map editing view; sidedefs
are grouped with linedefs for simplicity.

P
Pcode Pcode is short for pseudo-code.    It refers to an interpreted series of instructions,

usually compiled from a higher level language.

Polyobject A polyobject is a complex architectural feature whose location is resolved at
map load time.    Polyobjects were added with the release of Hexen to support

behavior otherwise not allowed within the constraints of previous wadgame
engines.    Swinging doors, rotating walls, et. al. are examples of polyobject use.

Property A property is a piece of information or setting relevant to a given object.    For
example, thing properties include a class, type, attributes, and other
information.

Q
R

Raven
Software

A company with some ties to Id Software.    They are partially responsible for
producing the Heretic and Hexen wadgames.

Runner For WadAuthor’s purposes, at least, this term refers to the portion of a step
facing the player when ascending a staircase.   

Rubberband In WadAuthor, this term refers to an operation by which the user indicates a   
rectangle within the current map for further processing.    The term is used
because of the flexible way in which the rectangle is specified.

S
Script A series of instructions to be executed.    Scripts were introduced with the Hexen

wadgame.

Secret A sector having the secret attribute counts towards the evaluation presented to
the player at the end of each level.    A linedef with the secret attribute will
appear as a normal one-sided linedef on the player’s map at runtime — this can
be very useful when creating a secret room.

Sector A sector defines a room within a map.    It contains lighting conditions, floor and
ceiling heights, and other information.

Sidedef A sidedef defines how a linedef appears when viewed from a given side.

Stairwell For WadAuthor’s purposes, at least, this term refers to the side walls of a
staircase.    For example, when converting a sub-sector into a rising staircase,
the stairwell will be the newly formed walls protruding from the parent sector’s
floor.

T
Thing A thing defines a single object within a map.    Most things interact with the

player in some way, although some are strictly scenery.    A few examples are
weapons, ammunition, and enemies.

Texture A texture is a bitmap image applied to a geometric surface by the wadgame
engine.

Texture
mapping

Texture mapping, in the general sense, refers to an algorithm that applies a
bitmap to a surface.    In the wadgame specific sense, it refers to the process of
applying the linedef and sector images to the walls, ceiling, and floor to create a
believable environment.

Track When talking about a door, this term refers to the generally one-sided linedefs
along which the door rises when opened.

U
Undo The undo feature allows the user to reverse the effects of the last editing

operation.    WadAuthor maintains an undo operation for every editing operation

performed since the last time the map was saved.

V
Vertex A vertex defines a single point within a map via Cartesian coordinates.    For

those who don’t remember geometry, a Cartesian coordinate is a simple pair of
orthogonal values usually denoted by (x,y).

W
Wadfile A data file intended for use with several games from id software.    A wadfile

consists of a header, resources, and a resource directory.    Refer to the
understanding wadfiles topic for more information.

Wadgame Wadgame is a term I have coined to refer to any game utilizing a wadfile.    A few
examples are DOOM, DOOM][, and HERETIC.

X
Y
Z

No Help Available

Sorry, but there is no help topic available for the current context.

 About WadAuthor

WadAuthor came about during the process of crafting my first wadfile for DOOM.    I truly prefer the Windows
environment to DOS, and it frustrated me greatly that the only editor I could really count on was a DOS
application!    As I learned more about the DOOM engine during the construction process, I starting thinking
fondly about creating my own editor.    Because several of the technical issues involved were largely unfamiliar
ground to me, I approached the entire thing as one big research project.    WadAuthor is the result of that
process.

Date Release notes
7/26/96 Release 1.30.    If an external wadfile is used for additional images, it will now be included when

running the map.    Fixed a focus problem with the image browser dialog incremental searching.
Improved zoom under WindowsNT to a maximum of 400%. Improved zoom under Windows95 to a
maximum of 250% by limiting map size to 16000 units square. Changed the tag dialog to center the
map editing view on the selected object. Added the make column option to the new rectangular
sector dialog and the new polygonal sector dialog. Added the current zoom setting to the status bar.
The image browser dialog now appends an asterisk to the name of an image if it is not supplied by
the main wadfile. When running a map, WadAuthor will now create a response file for passing
arguments if the command line length is greater than the operating system allows. Added panning
on Ctrl+Shift primary click.    This feature allows the user to scroll the map view by grabbing a
location and dragging rather than by using the scroll bars. Added the run map dialog for customizing
options immediately prior to launching the game. Added the tip of the day dialog to provide on-going
help and amusement.

6/21/96 Release v1.22. Fixed duplicate thing description problem with Hexen.    Changed shift-primary-click to
add an object it to the selection if the user does not drag a rubberband selection. Changed primary-
click on a selected object to select exclusively if a move operation is not performed. Changed the
automatic tag assignment feature to select first available tag rather than use the hightest numbered
tag plus one. Changed the rubberband selection to add to the existing selection rather than clearing
it first. Changed the current object handling to clear automatically when the cursor is not over an
object. Added code for handling long filenames correctly when running a map or executing user-
defined tools. Made waiting for user-defined tool execution an option. User-defined tool replaceable
parameters now include long filename macros for passing long filenames to 32-bit Windows
applications.    Added the How To Make A Lift help topic.    Added the ability to make one linedef
parallel to another, optionally aligning it at a fixed distance.

5/31/96 Release v1.21. Fixed a GPF when setting external image handling to the current document with an
unsaved document. Fixed a bug that caused thing types to appear multiple times within the thing
property dialog. Fixed a bug preventing the save of a read-only file under a new filename. Fixed a
selection list bug causing a GPF during map reloading. Fixed image acceleration code causing a GFP
during map reload. Fixed GPF during image browsing for flat images of sizes other than 64 x 64
pixels. Fixed stair motif floor and ceiling runner image list controls to browse textures rather than
flats. Fixed invalid Heretic defaults for stair motifs. Fixed detection of flats within a graphics PWAD
using FF_START/FF_END. Added 'X' keystroke shortcut for splitting selected linedefs. Added 'J'
keystroke shortcut for joining selected objects. Changed the tag handling in property dialogs to allow
selection from a list of available tags. Added the ability to set linedef lengths.

2/19/96 Release v1.20.    Flipping linedefs now forces a node rebuild during the next save operation. Script
import and export dialog file types now work under Windows95. The missing Floor_ForceLightning
special has been added to the Hexen configuration file. The Hexen Arc of Death thing has been re-
classified as a weapon. The object insertion dialog has been fixed to request a location from the user.
The map checking routine has been fixed to prevent interpreting a local door as having an invalid tag
number. Fixed a problem with clipboard pasting that prevented the front sides of linedefs from
getting properly fixed up with the correct surrounding sector number. The center on map object
dialog no longer allows an object number one larger than the maximum. When deleting a sector,
WadAuthor no longer deletes two-sided linedefs still in use by another sector. A bug that caused
texture alignment to fail has been fixed. Added the ability to abort running the map if the
WARUN.EXE utility is not present. Improved performance when browsing thing images by the
addition of a multi-threaded preload routine at startup.    Under Win32s (which does not support
threads), the data will still be preloaded, it will simply delay application startup.    When deleting a
sector, WadAuthor now goes to much greater lengths to make sure all remaining one-sided linedefs
have a main texture. Changed thing drawing to display facing angle for the appropriate classes.   
Added incremental searching to all image name edit controls. Clicking on an unused portion of the

map with the primary mouse button begins a rubberband selection. Changed insertion of rectangular
sectors to allow separate specification of horizontal and vertical widths. Changed the center on map
object dialog to select the number control when any of the type controls are selected to simply
keyboard use.    Added the ability to disable snap to grid on the fly during a drag operation by holding
down the shift key.    Improved drawing to make a distinction between one-sided and two-sided
linedefs.    By default, one-sided linedefs are drawn in a lighter color. Removed almost all restrictions
on door conversion; any sector connected to at least one other sector may now be converted to a
door.    Changed insertion of rectangular sectors to snap upper left vertex to grid only if the snap to
grid feature is enabled. Changed insertion of polygonal sectors and things to snap center to grid only
if the snap to grid feature is enabled. Changed Hexen sector to door conversion to stop using up a
tag number. Changed check map dialog image problem fixing to use images from the linedef to be
fixed, if available, before relying upon the current sector motif. Made image caching defaults
sensitive to operating environment: 75 under Windows/NT, 50 under Windows95, and 25 for all other
environments.    Image acceleration code has been extended to support all known modes (256 colors,
64k colors, 16M colors, and true color). Added Windows95 spin controls where appropriate to
improve mouse interface. Changed polygonal sector calculations to produce normalized geometric
figures. Canceling a drag and drop operation now restores the previous view settings. Optimized
screen redraw performance.    Added a floor and ceiling image alignment grid.    To enable or disable
this feature, select the Show Floor Grid option from the context menu.    To change the default
setting, choose Options from the Tools menu; the default setting may be changed from the Views
page.    Added a bookmark feature. WadAuthor now supports additional images within the current
document or within an external wadfile. Added a document properties dialog.    Added a feature to
force a node rebuild during the next save operation. Added complete color customization.    Added a
full-screen view feature.      Added a tag editing and assignment option to the context menu.    The
helpfile has been converted to a more Windows95 friendly format.    WadAuthor now “remembers” the
last open map for each wadfile.

12/18/95 Release v1.11.1.    Fixed several bugs that went undetected during testing.    Released without
updating documentation as no feature changes occurred.

12/11/95 Release v1.11. Fixed the check map dialog problem list to use the correct system-wide highlighted
text color setting.    Fixed a GPF when trying to add a SCRIPTS resource to maps that did not
previously have one.    Fixed a bug that incorrectly identified maps as not being ready to run.    Fixed a
bug that prevented scripts from being compiled when using the 32-bit version under Win32s. Fixed a
bug that prevented the script dialog buttons from appearing correctly when using the 32-bit version
under Win32s. Fixed a bug that caused the grid setting to be 2 units when using the 32-bit version
under Win32s.    Fixed a spelling error in the helpfile about topic. Fixed a bug in the thing properties
dialog that caused the thing type to be set incorrectly. Fixed a bug that prevented the available script
numbers from being updated after a successful script editing session. Fixed a bug with running
Hexen maps.    Added manual entry of thing angle to support polyobjects. Added a helpfile topic on
understanding polyobjects and expanded the understanding scripts topic. Added import and export
buttons to the scripts dialog.    Improved sector determination.    Added full source-level script
decompilation. Added an object zoom feature.    Added some example Hexen wads to the product.

11/17/95 Release v1.10. Fixed several bugs in vertex and linedef joining.    All known restrictions have been
removed.    Fixed a bug that occurred only when saving a new map failed.    If the initial save failed for
any reason, future attempts to save would fail.    Fixed a bug when pasting a copied sub-sector into
an unused portion of the map.    Previously, the sub-sector’s linedefs would not be correctly updated
as one-sided.    Fixed a bug in the 16-bit version that would cause all linedefs within a wadfile to be
incorrectly described (usually as local doors or something similar).    Pasting and undo operations in a
wad image name edit control now properly update the associated viewer (if any).    An object
property editing bug has been fixed to prevent generation of an empty undo operation.    Reduced
map load times by block reading wadmap objects.    Reduced internal node-building times slightly by
internally caching more data.    Added a drag cursor setting to the view options.    Uncheck it if the
normal drag cursor obscures the drag destination to an unacceptable degree.    Added a default grid
size setting to the view options.    Added new keyboard accelerators '[' and ']' for increasing and
decreasing the grid size.    Some systems, particularly when running Windows95, would not recognize
the Shift+Plus and Shift+Minus default accelerators.    Added new undo and check map buttons to
the standard toolbar.    Decreased the minimum grid setting to two units.    Improved sector
determination to ignore linedefs whose front and back face the same sector.    This solves
identification problems with sectors that fold back upon themselves or contain “tripwire” linedefs.   
Changed secondary mouse button usage to be more consistent with Windows95 interface guidelines.
Joining objects now re-checks the current map if the check map dialog is active.    Added a fix all
button to the check map dialog.    When pressed, it will fix all errors capable of being fixed without
input from the user.    Replaced the new thing dialog with the standard thing properties dialog.   
Improved the thing properties dialog to allow graphical selection of the thing type.    Clicking the
thing preview will invoke the image browser dialog, providing an alphabetically sorted list of the
available things.    The tags dialog now displays the tags in ascending sorted numerical order.    Added

a user-defined tools section to the tools menu.    Added new view and user toolbars.    Added a new
toolbars page to the options dialog.    It allows the user to specify which toolbars should be visible.   
Optionally, the user may right click on any toolbar to change these settings without opening the
options dialog.    Changed all toolbars to support docking to the frame window and each other.    Also
added code to remember the toolbar layout between WadAuthor sessions.    Added a dialog box for
inserting a rectangular sector to allow the user to specify the side length, optionally using the current
grid setting.    Added raw data editing for single objects.    This allows power users to directly specify
the raw data that will be saved to disk.    This feature should be used with care.    Added limited
support for Hexen, the newest wadgame from Raven/Id Software.    Added support for editing and
creating maps for the fourth episode of Ultimate DOOM.    Clipboard support has been enhanced to
support exchange of data across all game types.    When transferring data from Hexen to other
wadgames, some conversion may be necessary, but existing architecture will be preserved as much
as possible.

9/29/95 Maintenance release v1.03. Rewrote document saving code to avoid several GPF's for maps with lots
of sidedefs.    Fixed bug that prevented the selected door motif from being applied during conversion. 
Fixed GPF when trying to join two-sided lines with an invalid back sector mapping.    Fixed bug
preventing drag and drop joining of two-sided linedefs.    Added support for using an external node
building utility.    Added specific error messages for failed node building, failed application of wadfile
changes, and new wadfile creation.    Added the ability to set the sector mapping for linedef sidedefs. 
Enhanced the map statistics dialog.    Added a progress dialog for save operations.

8/25/95 Maintenance release v1.02.    Joining linedefs has been enhanced to allow joining of any two linedefs
-- as long as the sectors involved are valid.    Speeded up linedef drawing when zoomed in.    Fixed
duplicate vertex identification bug.    Added views page to options dialog and renamed maps page to
files page.    When snap to grid is off, keyboard-based object insertion no longer snaps to grid.    Using
keyboard to set current object now updates status bar.    Added multi-sector rotation and scaling with
optional inclusion of things therein.    Sectors will now be joined when joining vertexes.    Several
floating point errors in the 16-bit version have been fixed.    Fixed bug with clipboard when copying a
sub-sector into another sector.    Fixed bug preventing maps with > 8192 objects from loading in 16-
bit windows version.    Add ability to rename the current map within the current wadfile.    Added the
Select All option to the Edit menu.    Added the Tutorial, Troubleshooting, and What’s New? items to
the Help menu.    Improved the map checking routine to report linedefs with an invalid tag number.   
Using the check map dialog’s fix button to repair problems with the wadfile was not properly allowing
the action to be undone, nor marking the document as changed; this bug has been fixed.    Fixed    a
bug in the check map dialog that prevented objects numbered zero from being viewed.    A double-
click in the type listbox of the new thing dialog exits the dialog, placing the selected thing.

7/17/95 Maintenance release v1.01.    Added a snap to grid option, added color thing printing for color
printers, changed polygonal sector limits, fixed a bug that prevented the File/Save As... option from
working, fixed a palette handling bug that allowed WadAuthor’s display to be corrupted when
switching back from another program, fixed the VERSIONINFO resource, expanded the text for some
linedef floor codes, added a check for the WARUN.EXE utility when running a map, added options
dialog, and fixed a bug in the 16-bit version of the REJECT resource creation that prevented maps
with more than 217 sectors from working.

6/30/95 Initial public release.    Completed the keyboard interface, added thing display dialog, added texture
alignment, added tags dialog, enhanced check map dialog, added printing and print preview,
expanded the help file, improved current object determination for sectors, and breathed a big sigh of
relief!

5/18/95 Released the second beta to some friends.    Added sector scaling and rotation, added stair
conversion, added door and stair motifs, added undo functionality, greatly expanded the help file,
tied context-sensitive help into the app, added configuration files for DOOM][and HERETIC, added
support for color depths above 256, added object filtering, and fixed quite a few bugs.

4/12/95 Released the first beta to some friends.    Major functionality seems intact; lacking good
documentation and some polish.

Technical Information
WadAuthor was born as a collection of humble 16-bit DOS utilities, migrated into a couple of Windows 3.x
utilities, and finally became an MFC application using Microsoft Visual C++ v1.52.    With the availability of
Microsoft Visual C++ v2.0, WadAuthor started straddling the 32/16 bit fence as a Windows/NT native application. 
It has been tested in the Windows 3.1, Windows for Workgroups v3.11, Windows/NT v3.0-v4.0 (beta), Windows95
Preview, and Windows95 final release environments.

The main WadAuthor executable is compiled from 72,000+ lines of C++ code, roughly one-third of which is
specific to wadfile editing.    It relies on a couple hundred lines of AWK code used for generation of the wadgame
configuration files and other miscellany.    The help file, developed with the assistance of RoboHelp for
Windows95, is compiled from around seventy separate document files and over one-hundred images.

Join Objects?

If two objects occupy the same position as the result of a drag and drop operation, WadAuthor will ask if the
objects should be joined.    Press the Yes button to join the objects, or press the No button to keep them separate.

WadAuthor Requires At Least 256 Colors
{button ,JI(`wauthor.HLP',`Why_won_t_WadAuthor_run_with_a_sixteen_color_video_driver')}    Related Topics

WadAuthor has determined that your current video mode supports less than 256 colors.    WadAuthor requires at
least 256 colors for normal operation.    Please select a different video mode and try again.    Press the OK button
to dismiss the dialog box and close the application.

WadAuthor Requires A Configuration File
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

WadAuthor requires a valid wadgame configuration file for normal operation.    Please locate one or re-install if
necessary before trying again. Press the OK button to dismiss the dialog box and close the application.

Close The Check Map Dialog?

Some operations require that the check map dialog box be closed.    Press the Yes button to allow the check map
dialog box to closed, or press the No button to cancel the pending operation.

The Map Must First Be Saved

Some operations require that the map be saved.    You have not allowed the software to do so; thus, the
operation will be canceled.    Press the OK button to dismiss the dialog box.

Not A Valid Wadfile

The wadfile in question has an invalid header, an invalid directory, or contains corrupt data.    Please select a
different wadfile.    Press the OK button to dismiss the dialog box.

Remove The Motif?
{button ,KL(`Motifs',0,`',`')}    Related Topics

WadAuthor needs confirmation that you want to remove the currently selected motif.    Please press the Yes
button to confirm, or press the No button to cancel the removal.

Invalid Motif Name
{button ,KL(`Motifs',0,`',`')}    Related Topics

The motif name you have entered is invalid.    Motif names cannot be blank.    Please press the OK button to
dismiss the dialog box and enter a valid motif name.

Remove The Tag?
{button ,KL(`Motifs',0,`',`')}    Related Topics

WadAuthor needs confirmation that you want to remove the curently selected tag.    Please press the Yes button
to confirm, or press the No button to cancel the removal.

Reassign The Tag?
{button ,KL(`Tags',0,`',`')}    Related Topics

The object already has a different tag.    Press the Yes button to assign it the current tag number, or press the No
button to cancel the operation.

Assign A New Tag?
{button ,KL(`Tags',0,`',`')}    Related Topics

Either the current map uses no tags, or you do not have one selected.    Press the Yes button to create a new tag
and assign it to the object, or press the No button to cancel the operation.

Invalid Software License

The software license file is either missing or corrupt.    Reinstall the software and try again.

Registration Attempt Failed

The data supplied to the register dialog was invalid.    Please try again.    Remember, the information is case
sensitive and must be typed exactly as in appears in order to work properly.

Could Not Execute
{button ,KL(`The Run Map Feature Fails',0,`',`')}    Related Topics

The run map feature has failed.    Check the related topics for more information.

WARUN.EXE Is Missing

WadAuthor could not locate WARUN.EXE in the same directory as the WadAuthor executable.    The WARUN.EXE
utility is used to launch the appropriate wadgame for running the current map, avoiding certain operating
system problems in the process.    This message is informational in nature; WadAuthor will still try to run the
map, but it may fail for reasons WARUN.EXE was designed to prevent.    You may press the OK button to try
anyway, or press the Cancel button to abort running the map.

Could Not Write To File

This error message, not surprisingly, means that WadAuthor tried to write data to a given file, and could not.   
When this occurs, it is usually due to one of several possible causes.    These are listed below.

n The disk to which WadAuthor was trying to write is full.
n The disk to which WadAuthor was trying to write is copy protected.
n The file to which WadAuthor was trying to write is marked read only.

Confirm Map Replace

This message appears when trying to rename the current map if the new name already exists within the wadfile. 
Pressing the Yes button will cause the pre-existing map to be replaced.    Pressing the No button cancels the
operation.

Renaming the map, like any other editing operation, may be undone.    WadAuthor will not actually change
the map name until the file is saved, even though the title bar may seemingly indicate otherwise.

Node Build Failed
{button ,KL(`File Options Dialog',0,`',`')}    Related Topics

This error message means that the node building portion of the save operation was not successful.    If node
building is set to External, check to make sure the supplied command is valid.    If node building is set to Internal,
then WadAuthor has suffered an internal failure; please contact the author and report the bug.

The Map Cannot Be Run
{button ,KL(`File Options Dialog',0,`',`')}    Related Topics

This error message means that the current map does not have the runtime data necessary for the wadgame to
use it.    Because this data is generated during the node building process, this error message usually means one
of the two things listed below.

n The node building process failed during the last save operation.
n Node building has been set to None.

Check the node building settings and save the current map before trying the run option again.

Wad Create Failed

This error message means that a new wadfile could not be created during the save operation.    This is usually
due to a lack of available disk space.

Save Failed

This error message means that WadAuthor could not create the entire wadfile on disk.    During a save operation,
WadAuthor copies all unchanged portions of the wadfile from the previous version, saving the changed portions
directly from memory.    If it cannot safely complete this process, the save operation will fail with this error
message. This is usually due to a lack of available disk space.

Could Not Run Tool

This error message usually means that the command line or command-line parameters of the specified user-
defined tool is incorrect.    Check the tool parameters before trying again.

Could Not Save User Tools

This error message usually means that the user-defined tools file has been marked read-only or a disk error has
occurred.    Check to make sure that the file is not marked read-only and make sure enough disk space is
available before trying again.

Wrong Configuration File

This error message means that you have tried to open a wadfile for which WadAuthor cannot use the current
wadgame configuration file.    For example, Hexen, unlike the other wadgames, uses different data structures for
various map objects; this prevents WadAuthor from editing a Hexen map with a configuration file designed for
another wadgame.    Select a different wadgame configuration file before trying again.

Conversion Necessary

This message means that the data originated from a wadgame that uses different data structures for various
map objects.    Because of this, it is necessary to convert the data before proceeding.    Some data loss can be
expected.

Confirm Closing Tag Tool

In order to continue with the current operation, the tag tool must be closed.    If you choose not to close the tag
tool, the current operation will abort.

No Errors Detected

This message means that the last operation completed successfully without encountering any error conditions.

Missing Script Compilation Files

This error message means that one or more of the files required for compiling script code was not present in the
WadAuthor directory.    Please make sure the following files are present in the WadAuthor directory before trying
again.

n WARUN.EXE
n ACC.EXE

Could Not Compile

This error message usually means that there wasn’t enough memory to launch the script code compilation
process.    Check the amount of free memory before trying again.

Confirm Old Compiled Code

This message means that the script code has changed since the last time it was compiled.    If you choose to
continue anyway, the old compiled code saved to the wadfile will not well represent the newer script code.

Could Not Set Tag

This error message means that the specified object cannot be tagged.    Please make sure you are specifying the
correct object before trying again.

Field Cannot Be Blank

The specified data field cannot be left blank.    Data is required for correct operation.    Please enter valid data
before continuing.

Confirm Map Name

The map name you have supplied could not be found in the main wadfile for the current wadgame.    If you
choose to continue, the map will not function with the current wadgame.

Confirm Script Code Editing
{button ,KL(`Scripts',0,`',`')}    Related Topics

The current map did not contain a resource from which script code could be obtained when it was last loaded
from disk.    The map did, however, contain compiled pcode.    If you create script code and save this map, it will
overwrite the old pcode — possibly rendering the map unplayable.

Wait For Process

When running the 32-bit version of WadAuthor under Microsoft’s Win32s, it is not possible for WadAuthor to
correctly wait for a process to finish without jumping through some very obscure technical hoops.   

To insure that WadAuthor waits until the process is finished to take further action, this message is displayed.   
When the process has finished, press the OK button to let WadAuthor know it is safe to proceed.    Pressing the
button early may cause the operation to fail.

Import/Export Failed

WadAuthor could not import or export the script code.    When importing this usually means that the file is too
big.    When exporting this usually means that the filename supplied is already in use by a read-only file, or the
disk is full.

Confirm Abandoning Changes

This message means that the data has been changed without being saved.    Press the Yes button to continue
and abandon the changes, or press the No button to abort the operation.

Replace Bookmark?

This message means that the bookmark being set already exists.    Press the Yes button to replace the bookmark,
or press the No button to abort the operation.

Undo Operation Failed

This message means that the undo operation could not restore the correct state prior to the last editing
operation.    It is probably wise to close the application and restart.

Thank You For Registering!

Thank you very much for registering WadAuthor!    You are making shareware work.

Could Not Fix Error

This message means that one of the errors in the check map dialog could not be fixed.    You will have to fix it
manually.

Confirm Force Node Rebuild

Forcing a node rebuild, unlike other editing operations, cannot be undone.    It will cause WadAuthor to remove
the node data so that the map cannot be played until a node building operation is performed.    Press the Yes
button to continue, or press the No button to abort the operation.

Confirm Texture Use
{button ,KL(`Custom Images',0,`',`')}    Related Topics

This message means that WadAuthor has detected additional textures to be used for editing but no associated
panel names resource was found.    You may press the Yes button to use the additional images, or press the No
button to use only those images present in the main wadgame wadfile.

File Contains No Maps

This message means that WadAuthor could not find any maps in the given wadfile.    Please select a different
wadfile and try again.

 Credits And Thanks To...

n My wife, for her beauty, love, and patience.
n Tim "let me know when it's done so I can use it" Walker, for his input, beta-testing, and letting me borrow

DOOM][for a while.
n Steve [Captain] Hoek, for loads of interface suggestions and constant reality checks.
n Pat "I have no idea how much it's costing us" Burrell, for helping me arrive at the final mouse interface.
n Aaron Kamphuis for letting me borrow Heretic for a while.
n Raphaël Quinet and any contributors to the Doom Editing Utilities (DEU), for providing source code for the

node building process and several other items of interest.
n Colin Reed and Alex Korobka for the initial porting of the node building code to Windows.
n Ben Morris, author of The Doom Construction Kit (DCK), for making the best freeware DOS editor available.
n Jack and Mike Vermeulen for help with the Hexen thing data.
n Colin Caird for helping me understand polyobjects.
n Luc Cluitmans for taking my script disassembler and turning it into a decompiler.
n Olivier Montanuy for helping me understand how best to support custom images.
n Steve Benner for providing a wealth of good user-interface suggestions.
n Jan-Albert B. van Ree and WTF Productions for providing me with a special version of their editing guide.
n ID Software, for creating one of the most thoroughly enjoyable, albeit theologically ridiculous, games I've ever

played.

Most of all my thanks goes to the Lord Jesus Christ, for doing that which I could not; truly "Thine is the kingdom,
and the power, and the glory, forever. Amen." (NAS Mat 6:13)

I would like to dedicate WadAuthor to the memory of my father, John A. Williston, who for some reason decided
to end his life over the weekend of March 16-17, 1996.    He helped me to build my first computer as a twelve
year old boy, and I am well within the mark when I say that I would never have become the man I am today
without him.

About Dialog

The about dialog box, shown in the illustration below, provides some basic information about WadAuthor as well
as the software license information.

Align Textures Dialog
{button ,KL(`Textures',0,`',`')}    Related Topics

The align textures dialog, shown in the illustration below, allows the user to specify which side of the linedefs to
align and which texture to use for sizing information.

Apply Motif Dialog
{button ,KL(`Motifs',0,`',`')}    Related Topics

The apply motif dialog, shown in the illustration below, allows the user to select a motif to be applied to selected
sectors or used when converting a sector to a door.    Select the desired motif and press the OK button, or press
the Cancel button to abort.

Check Map Dialog

The check map dialog box, shown in the illustration below, simplifies finding and fixing map problems.    You may
click on the controls in the illustration below for more specific help.

Item List

This control contains the problems detected with the map.    Problems that have already been fixed appear in
gray.

Explanation

This control provides a brief explanation of the current problem.

View Button

This control centers the map on the current problem when pressed.

Fix Button

This control applies a default corrective action to solve the current problem when pressed.

Fix All Button

When pressed, this control applies a default corrective action to solve all of the problems for which a default
corrective action exists.

Recheck Button

This control rechecks the map and updates the item list.

Close Button

This control closes the dialog when pressed.

File Open/Save Common Dialog

The file open/save common dialog box, shown in the illustration below, is one of the common dialog boxes
provided by Windows.    WadAuthor uses the Windows common dialog box functions to provide a consistent file
selection interface.    For help on using the common dialogs, consult your Windows manual.

Color Selection Dialog

The color selection dialog, shown in the illustration below, is one of the common dialog boxes provided by
Windows.    For more information about the color selection dialog, consult your Windows manual.

Font Selection Dialog

The font selection dialog, shown in the illustration below, is one of the common dialog boxes provided by
Windows.    For more information about the font selection dialog, consult your Windows manual.

Center On Object Dialog

The center on object dialog, shown in the illustration below, prompts the user for an object type and a number.   
Press the OK button to center the map on the specified object, or press the Cancel button to abort.

Directory Selection Dialog

The directory selection dialog, shown in the illustration below, allows the user to choose a directory via a familiar
folder-based interface.

Flip Linedef(s) Dialog

The flip linedefs dialog box, shown in the illustration below, allows the user to reverse one or more linedefs.    The
user must select one of the two options and press the OK button to continue, or press the Cancel button to abort.
The two options are explained below.

n Include Textures And Other Data is the more complete option, exchanging not only the starting and ending
vertexes but also the sidedef texture information.

n Flip Front/Back Orientation Only means that only the starting and ending vertexes will be exchanged.   
This has the effect of reversing the front and back sides.    For example, if a linedef goes from vertex six to
vertex three, selecting this option will change the linedef to be defined from vertex three to vertex six.

This feature should be used carefully, as it can cause map errors when used improperly.    For example,
flipping only the front/back orientation of a single-sided linedef will leave the undefined back sidedef facing into the
given sector.

Image Browser Dialog

The image browser dialog, shown in the illustration below, is used throughout WadAuthor to simplify image
selection.    You may select images by using the mouse to navigate the listbox, or by using the incremental
search feature.    Press the OK button to accept the selected image, or press the Cancel button to close the dialog
box without accepting the selected image.

To use the incremental search feature, move to the image listbox and begin typing the first few characters of the
desired image.    A small edit window will appear near the listbox where the characters you type will be
displayed.    As you type more of the name, the listbox selection is repositioned accordingly.    Press the escape
key to cancel the incremental search, or press the enter key to accept the current results of the search.

If an asterisk follows the image name, this indicates that the image data is not supplied by the main
wadfile.

Insert Object Dialog

The insert object dialog, shown in the illustration below, is displayed to allow the user to select the type of object
to be inserted.    Select the desired object and press the OK button to continue, or press the Cancel button to
abort.

Map Name Dialog

The map name dialog, shown in the illustrations below, changes to accommodate the map naming convention of
the current wadgame.    In each case, the dialog box will supply instructions for providing a map name.

The dialog box to the left is used for wadgames using the EnMn map naming convention.

The dialog box to the left is used for wadgames using the MAPnn naming convention.

The dialog box to the left is used only when WadAuthor cannot understand the new map naming convention as
specified in the current wadgame configuration file.    It is intended to provide for future extensibility without
requiring a new version of WadAuthor.

Sector Motifs Dialog
{button ,KL(`Motifs;Configuration Files',0,`',`')}    Related Topics

The motifs dialog box sector motifs page, shown in the illustration below, allows the user to select a current
sector motif, add new sector motifs, and delete or change existing sector motifs.    You may click on the controls
in the illustration below for more specific help.

Because motifs contain wadgame specific information, a different motif file is used for each configuration
file.    Check the related topics for more information.

Door Motifs Dialog
{button ,KL(`Motifs;Configuration Files',0,`',`')}    Related Topics

The motifs dialog box door motifs page, shown in the illustration below, allows the user to select a current door
motif, add new door motifs, and delete or change existing door motifs.    You may click on the controls in the
illustration below for more specific help.

Because motifs contain wadgame specific information, a different motif file is used for each configuration
file.    Check the related topics for more information.

Door Activation

This listbox displays a list of the available door activation types.    These refer to linedef types or specials
depending upon the wadgame for which the map is intended.

Stair Motifs Dialog
{button ,KL(`Motifs;Configuration Files',0,`',`')}    Related Topics

The motifs dialog box stair motifs page, shown in the illustration below, allows the user to select a current stair
motif, add new stair motifs, and delete or change existing stair motifs.    You may click on the controls in the
illustration below for more specific help.

Because motifs contain wadgame specific information, a different motif file is used for each configuration
file.    Check the related topics for more information.

New Polygonal Sector Dialog

The new polygonal sector dialog, shown in the illustration below, allows the user to specify the number of sides
and the radius when creating new polygonal sectors.    If make column is checked, the linedefs of the new sector
will be one-sided and impassable facing outward from the center; otherwise, the linedefs of the new sector will
be two-sided and facing inward allowing the player to freely cross.

New Rectangular Sector Dialog

The new rectangular sector dialog, shown in the illustration below, allows the user to specify the length to use for
each side, optionally using the current grid setting, when creating new rectangular sectors. If make column is
checked, the linedefs of the new sector will be one-sided and impassable facing outward from the center;
otherwise, the linedefs of the new sector will be two-sided and facing inward allowing the player to freely cross.

Object Filter Dialog

The object filter dialog, shown in the illustration below, allows the user to control which type of objects are
affected by selection operations.

Colors Options Dialog
{button ,KL(`Options',0,`',`')}    Related Topics

The options dialog colors page, shown in the illustration below, allows the user to configure the colors used by
WadAuthor.    You may click on the controls in the illustration below for more specific help.

Colors

The list of colors available for modification is displayed here.    The usage of each color is explained in the
following list.

n Background is used for the map editing view background color.
n Border is used for drawing two-sided linedefs and other general outlining.
n Bright Border is used for one-sided linedefs.
n Floor Grid is used to draw the floor and ceiling alignment grid markers.
n Grid is used to draw the regular grid lines.
n Highlighted is used for the current object and other highlighted objects.
n Not Displayed is used for rendering things that do not appear at the current filter settings.
n Selected is used to outline selected objects.
n Tagged is used to outline tagged objects.

Set Color

The set color button, when pressed, displays the color selection common dialog box.

Reset

The reset button, when pressed, returns the currently selected color to its initial value when the dialog was first
displayed.

Reset All

The reset button, when pressed returns all colors to their initial values when the dialog was first displayed.

Defaults

The defaults button, when pressed, sets all colors to their default values.

File Options Dialog
{button ,KL(`Options',0,`',`')}    Related Topics

The options dialog files page, shown in the illustration below, allows the user to configure various aspects of
wadfile management in WadAuthor. You may click on the controls in the illustration below for more specific help.

Make Backups

The make backups option, when checked, causes WadAuthor to retain the previous version of a map during a
save operation.

Node Building

The node building options determine how WadAuthor will handle a map that needs a node rebuild when saving.   
The options are explained below.

n None will result in much faster save times — particularly when working with large maps.    However, the map
will not be playable until a node rebuild is performed.

n Internal will cause WadAuthor to use its own internal node building code.    This is the default option, and is
probably the best in most circumstances.

n External will cause WadAuthor to execute the user-specified command whenever a node rebuild is required.   
The command may use four macros, $_Wadfile, $_Wadmap, $_Mapname, and $_Comspec, to specify the fully
qualified pathname of the current map, the command-line parameter appropriate to the map name, the actual
map name, and the command shell processor.

When using External node building, checking the Show External Node Build option will make the node-building
child process visible to the user.

General Options Dialog
{button ,KL(`Options',0,`',`')}    Related Topics

The options dialog general page, shown in the illustration below, allows the user to configure various aspects of
WadAuthor. You may click on the controls in the illustration below for more specific help.

Restore Main Window Position

The restore main window position option, when checked, will cause the location and sizing parameters of
WadAuthor’s main window to be remembered from session to session.

Unlimited Undo

The unlimited undo option, when checked, causes WadAuthor to maintain a complete undo history to the time of
the last file save.    Disabling this option, however, can save quite a bit of memory during long editing sessions.

Toolbar Options Dialog
{button ,KL(`Control Bars;Options',0,`',`')}    Related Topics

The options dialog toolbar toolbars page, shown in the illustration below, allows the user to determine which
toolbars are available for use.    Toolbars may also be shown or hidden by right clicking on a toolbar and selecting
from the resulting menu.

The view and user toolbars are not available in the 16-bit version of the software.    This is due to a
limitation of the 16-bit Microsoft Foundation Classes.

View Options Dialog
{button ,KL(`Options',0,`',`')}    Related Topics

The options dialog views page, shown in the illustration below, allows the user to configure various aspects of
the views in WadAuthor. You may click on the controls in the illustration below for more specific help.

Start Maximized

The start maximized option, when checked, causes new map editing views to start in a maximized state.

Show Grid

The show grid option, when checked, causes all new views to initially display the grid.

Show Floor Grid

The show floor grid option, when checked, causes all new views to initially display the floor and ceiling image
alignment grid.

Show Thing Bitmaps

The show thing bitmaps option, when checked, causes all new views to initially display sprite bitmaps whenever
possible to do so.

Snap To Grid

The snap to grid option, when checked, causes all new views to initially snap objects to grid whenever
appropriate.

Use Drag Cursor

The use drag cursor option, when checked, causes WadAuthor to display the standard single-document or multi-
document cursor during a drag operation.    If this obscures the drop location marker to an unacceptable degree,
uncheck the option.

Default Grid

The default grid setting determines the grid setting used for all new views.

Print Setup Dialog

The print setup dialog box, shown in the illustration below, allows you to select the destination printer and its
connection as explained by the options following the illustration.

Printer
Select the printer you want to use.    Choose the default printer; or choose the specific printer option and
select one of the current installed printers shown in the box.    You install printers and configure ports using
the Windows Control Panel.

Orientation
Choose portrait or landscape.

Paper Size
Select the size of paper that the document is to be printed on.

Paper Source
Some printers offer multiple trays for different paper sources.    Specify the tray here.

Options
Displays a dialog box where you can make additional choices about printing, specific to the type of printer you
have selected.

Network...
Choose this button to connect to a network location, assigning it a new drive letter.

Print Dialog

The print dialog box, shown in the illustration below, allows you to specify how the document should be printed
as explained by the options following the illustration.

Printer
This is the active printer and printer connection.    Choose the Setup option to change the printer and printer
connection

Setup
Displays the print setup dialog box so    you can select a printer and printer connection.

Print Range
Specify the pages you want to print:

All Prints the entire document.
Selectio
n

Prints the currently selected text.

Pages Prints the range of pages you specify in the From and To boxes.
Copies

Specify the number of copies you want to print for the above page range.
Collate Copies

Prints copies in page number order, instead of separated multiple copies of each page.
Print Quality
Select the quality of the printing.    Generally, lower quality printing takes less time to produce.

Thing Properties Dialog
{button ,KL(`Properties;Textures',0,`',`')}    Related Topics

The map object properties dialog thing page, shown in the illustration below, allows editing of multiple things.
You may click on the controls in the illustration below for more specific help.

Thing Class

This a somewhat arbitrary distinction made by WadAuthor to reduce the large number of thing types to a
manageable list.    The classes are defined by the current wadgame configuration file.

Thing Type

This uniquely defines the appearance and behavior of a thing at runtime.    The types are defined by the current
wadgame configuration file.

Thing Attributes

These determine on which skill levels and in which modes of play the given thing will be present at runtime.   
The attributes are explained in the table below.

Attribute Description
Level 1/2 This thing will be present on the lowest two skill levels of play.
Level 3 This thing will be present on the third skill level of play.
Level 4/5 This thing will be present on the highest two skill levels of play.
Deaf This thing will not respond to sound; it will not attack the player until the player

attacks or enters its field of vision.    This attribute is only meaningful for enemies.
Multi This thing will only appear in multi-player mode.

Thing Preview

An image of the currently selected thing will be displayed here.    If no image is available, a large red circle with a
diagonal line through it will appear instead.    The images displayed are sprites extracted from the wadgame’s
main wadfile; the association of sprite name to thing type is made by the current wadgame configuration file.   
Clicking the image will display the image browser dialog    to allow graphical selection of the desired thing type.

The images are zoomed to a maximum of three times their actual size or minimized to a minimum of half
their actual size to best utilize the available screen real estate.

Thing Position And Facing

The Cartesian coordinates of the thing, along with the direction in which it faces are specified here. The
coordinates are given in units, while the direction is given by selecting from a series of radio-buttons arranged
roughly like the points of a compass.

Linedef Properties Dialog
{button ,KL(`Properties;Textures;Tags',0,`',`')}    Related Topics

The map object properties dialog linedef page, shown in the illustration below, allows editing of multiple linedefs.
You may click on the controls in the illustration below for more specific help.

Linedef Class

This a somewhat arbitrary distinction made by WadAuthor to reduce the large number of linedef types to a
manageable list.    The classes are defined by the current wadgame configuration file.

Linedef Type

This uniquely defines any special behavior of the linedef at runtime.    The types are defined by the current
wadgame configuration file.    The codes displayed at the beginning of the linedef type determine the linedef’s
method of activation and are explained in the following table.

Code Meaning
n No sector tag is required; this linedef provides a simple effect.
W Linedef is activated when the player walks across the front side.
S Linedef is activated when the player “uses” it.
G Linedef is activated when the player shoots it.
1 Linedef can only be activated once.
R Linedef can be activated repeatedly.
L Changes to the affected sectors will be locked for the duration of game play.
e Linedef can be activated by enemies.

Linedef Sector Tag

This associates a linedef or group of linedefs to a sector or group of sectors.    When a linedef of a type that
requires a sector tag number is triggered, all sectors having the same tag number are affected.

Linedef Attributes

These determine whether the linedef can be crossed and how and when it appears on the map.    They also alter
the manner in which images are displayed for the linedef’s front and back sides.    The attributes are explained in
the table below.

Attribute Description
Impassable Neither players nor enemies can cross this linedef.
Block Enemies Enemies cannot cross this linedef.
Two Sided The linedef can be crossed in both directions.
Upper Unpegged The above image is rendered top down instead of bottom up.
Lower Unpegged The main and below images are rendered bottom up instead of top down.
Secret The linedef will appear on the player’s map in red.    This is useful for protecting

secret doors and other hidden features.    This has nothing to do with the
percentage of secrets found given at the successful conclusion of a map.

Block Sound Sound will be blocked by the second linedef of this type encountered.    This can
be used to facilitate ambush situations and the like.

Never On Map This linedef never appears on the player’s map — even if the map powerup is
acquired.

Always On Map When the map is begun, this linedef will be on the player’s map before the
player has seen it.    This is a good way to provide a clue towards what may lie
ahead.

Linedef Sidedef Selector

These two radio-buttons control which sidedef’s data, front or back, is available for modification.

Linedef Images

These image list controls determine how the linedef appears from the player’s perspective.    The name of the
image used at runtime can be entered here.

Linedef Image Offsets

Offset values for the horizontal and vertical image rendering may be supplied here.

Linedef Image Previews

These preview controls display the image whose name appears in the corresponding image list control.    Clicking
a preview control will display the image browser dialog for the corresponding image list control.

The images are zoomed to a maximum of three times their actual size or minimized to a minimum of half
their actual size to best utilize the available screen real estate.

Linedef Sidedef Sector

Each valid sidedef must correctly reference the sector it faces.    The sector number may be specified here to
correct map errors or achieve special effects.

Entering invalid data can render the map unplayable.    Please exercise caution when modifying the values
displayed here.

Sector Properties Dialog
{button ,KL(`Properties;Textures;Tags',0,`',`')}    Related Topics

The map object properties dialog sector page, shown in the illustration below, allows editing of multiple sectors.
You may click on the controls in the illustration below for more specific help.

Sector Type

This uniquely defines any special behavior of the sector at runtime.    The types are defined by the current
wadgame configuration file.

Sector Images

These image list controls determine how the sector’s ceiling and floor appear from the player’s perspective.    The
name of the image used at runtime can be entered here.

Sector Heights

These relative change controls set the ceiling and floor height for the sector.

Sector Image Previews

These preview controls display the image whose name appears in the corresponding image list control.    Clicking
a preview control will display the image browser dialog for the corresponding image list control.

Sector Lighting

This relative change control determines the lighting level for the sector.    The valid values are from 0 (completely
dark) to 255 (excessively bright) and may be affected by the sector type.

Sector Tag

This associates a sector or group of sectors to a linedef or group of linedefs.    When a linedef of a type that
requires a sector tag number is triggered, all sectors having the same tag number are affected.

Thing Properties Dialog (Hexen)
{button ,KL(`Properties;Textures',0,`',`')}    Related Topics

The map object properties dialog thing page (Hexen variant), shown in the illustration below, allows editing of
multiple things. You may click on the controls in the illustration below for more specific help.

Thing Attributes

These determine on which skill levels and in which modes of play the given thing will be present at runtime.   
The attributes are explained in the table below.

Attribute Description
Level 1/2 This thing will be present on the lowest two skill levels of play.
Level 3 This thing will be present on the third skill level of play.
Level 4/5 This thing will be present on the highest two skill levels of play.
Deaf This thing will not respond to sound; it will not attack the player until the player

attacks or enters its field of vision.    This attribute is only meaningful for enemies.
Dormant This thing must be explicitly activated by a special.    It will not function until then.
Fighter This thing will be present when the user is playing as a fighter.
Cleric This thing will be present when the user is playing as a cleric.
Mage This thing will be present when the user is playing as a mage.
Single This thing will be present when the user is playing a single-player game.
Cooperative This thing will be present when the user is playing a co-operative multi-player

game.
Deathmatch This thing will be present when the user is playing a deathmatch multi-player game.

Tag Number

This identifier may be used to group things together for manipulation by specials.

Thing Facing Angle

To better support polyobject creation, the user may manually specify the facing angle directly within this field.   
Polyobject anchors and starting positions are paired by supplying matching polyobject numbers in the thing
angle field.    Click here for more information about Understanding Polyobjects.

Linedef Properties Dialog (Hexen)
{button ,KL(`Properties;Textures;Tags',0,`',`')}    Related Topics

The map object properties dialog linedef page (Hexen variant), shown in the illustration below, allows editing of
multiple linedefs. You may click on the controls in the illustration below for more specific help.

Special Type

The special type specifies the action that will be initiated when the map object is activated.

Special Arguments

The special arguments are parameters passed to the special execution.    Each argument may range in value
from 0 to 255.    Unused arguments will be disabled, preventing the user from changing them.

Activate

The activate control allows the user to specify under what condition the linedef is activated.

Linedef Attributes

These determine whether the linedef can be crossed and how and when it appears on the map.    They also alter
the manner in which images are displayed for the linedef’s front and back sides.    The attributes are explained in
the table below.

Attribute Description
Impassable Neither players nor enemies can cross this linedef.
Block Enemies Enemies cannot cross this linedef.
Two Sided The linedef can be crossed in both directions.
Upper Unpegged The above image is rendered top down instead of bottom up.
Lower Unpegged The main and below images are rendered bottom up instead of top down.
Secret The linedef will appear on the player’s map in red.    This is useful for protecting

secret doors and other hidden features.    This has nothing to do with the
percentage of secrets found given at the successful conclusion of a map.

Block Sound Sound will be blocked by the second linedef of this type encountered.    This can
be used to facilitate ambush situations and the like.

Never On Map This linedef never appears on the player’s map — even if the map powerup is
acquired.

Always On Map When the map is begun, this linedef will be on the player’s map before the
player has seen it.    This is a good way to provide a clue towards what may lie
ahead.

Repeatable Is the linedef special (if any) a repeatable?

Register Dialog
{button ,KL(`Registration',0,`',`')}    Related Topics

The register dialog, shown in the illustration below, allows the user to update the software license.    Upon
payment for the software, the required information for completing the dialog box will be made available.    Simply
enter the information into the dialog fields and press the OK button to authorize your copy of WadAuthor.

If the registration dialog will not accept the information, an error has probably occurred during entry.   
Check the data very carefully, making sure the case is correct (the data is case-sensitive), making sure you’re not
typing zeroes for the letter ‘O’, etc.

Rotate Sector Dialog

The rotate sector dialog, shown in the illustration below, allows the user to specify the angle, in degrees, by
which the selected sector(s) should be rotated.    Positive values cause counter-clockwise rotation; negative
values cause clockwise rotation.

The Snap To Grid option, when checked, causes WadAuthor to snap each vertex of the selected sector(s) to the
current grid after performing the operation.    The Include Things option, when checked, causes WadAuthor to
preserve the positioning of things within the selected sector(s).

The Include Things option can greatly increase the time required for the operation.

Scale Sector Dialog

The scale sector dialog, shown in the illustration below, allows the user to specify the percentage by which the
selected sector(s) should be scaled.    For example, a value of two-hundred percent would double the sector
size(s).

The Snap To Grid option, when checked, causes WadAuthor to snap each vertex of the selected sector(s) to the
current grid after performing the operation.    The Include Things option, when checked, causes WadAuthor to
preserve the positioning of things within the selected sector(s).

The Include Things option can greatly increase the time required for the operation.

Scripts Dialog
{button ,KL(`Scripts',0,`',`')}    Related Topics

The scripts dialog, shown in the illustration below, allows the user to develop and compile script code for use
with Hexen-style wadgames. You may click on the controls in the illustration below for more specific help.

Script Code

The script code is entered and editing here.    If errors are detected during a compile, they are highlighted as
shown in the illustration.

Results

If errors are detected during a compile, the results are displayed here to allow the user to quickly diagnose and
correct the error condition.

Font Button

The font button, when pressed, will invoke the font selection common dialog box to allow the user to select a
fixed-pitch font for displaying the script code.    The system font is used by default.

Compile Button

The compile button, when pressed, compiles the script code as it currently exists above.    If errors are detected,
the results will be displayed and the offending line highlighted (if possible).

Show/Hide Button

This button, when pressed, toggles the state of the results window, showing or hiding it as appropriate.

Import Button

This button, when pressed, allows the user to specify a filename from which the script code will be loaded.

Export Button

This button, when pressed, allows the user to specify a filename to which the script code will be saved.

Select Map Dialog

The select map dialog, shown in the illustration below, allows the user to select which map within a wadfile to
edit.    Obviously, this only applies to wadfiles containing more than a single map.

Select Object Dialog

The select object dialog, shown in the illustration below, allows the user to disambiguate a mouse click within a
densely populated section of the current map.    Select a single object from the list and press OK to continue the
current operation, or press the Cancel button to abort.

Select Configuration File Dialog
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

WadAuthor supports different wadgames by using different wadgame configuration files.    At startup, if
WadAuthor cannot locate a valid wadgame configuration file, the dialog box shown below will be invoked to allow
the user to select one.    This same dialog is also used when the user selects a different wadgame configuration
file during normal operation.    If some or all of the required wadgame information is invalid, the wadgame
configuration dialog will be invoked to allow easy editing.

Statistics Dialog

The statistics dialog, shown in the illustration below, provides some useful information about the current map.   
The counts supply the total number of each object type in the current map.    The extents supply the map
rectangle in x-axis and y-axis coordinates, along with the minimum and maximum floor and ceiling heights in z-
axis coordinates.

Convert Sector To Stairs Dialog
{button ,KL(`Stairs',0,`',`')}    Related Topics

The convert sector to stairs dialog, shown in the illustration below, prompts the user for information when
converting a sector to stairs.    The number of steps determines the number of steps into which the sector will be
divided.    The motif contains the floor and ceiling height changes, the lighting change, and the images used for
the stairwell and runners.    The direction specifies the path along which the stairs should be created.

Tags Dialog
{button ,KL(`Tags',0,`',`')}    Related Topics

The tags dialog, shown in the illustration below, allows the user to examine and modify the existing tag
relationships between linedefs, sectors, and things (when working with Hexen maps).    Pressing the Add button
will add a new tag to those available, and pressing the Remove button will remove the current tag entirely.   
Clicking on the objects in the listbox will highlight them within the map.    Clicking on objecst on the map will add
or remove them to or from the listbox.

When working with Hexen maps, it is important to understand that not all linedefs can be tagged.    WadAuthor
will only allow you to tag linedefs whose special type requires a tag.    In this respect, linedefs are different from
sectors and things which may be freely tagged.

Thing Display Dialog

The thing display dialog, shown in the illustration below, allows the user to configure how things are displayed
and which things are displayed.    The show thing bitmaps checkbox determines whether or not bitmap images
will be used when possible.    The attribute checkboxes specify the attributes a thing must have in order to be
displayed.

Thing Display Dialog (Hexen)

The thing display dialog, shown in the illustration below, allows the user to configure how things are displayed
and which things are displayed.    The show thing bitmaps checkbox determines whether or not bitmap images
will be used when possible.    The attribute checkboxes specify the attributes a thing must have in order to be
displayed.

User Tools Dialog
{button ,KL(`Customize',0,`',`')}    Related Topics

The user tools dialog, shown in the illustration below, allows the user to configure the entries appended to the
Tools menu. You may click on the controls in the illustration below for more specific help.

The following list of replaceable parameters may be used within the command, arguments, and initial directory
fields.

Parameter Meaning
$_Comspec Command shell executable
$_Appdir The directory from which WadAuthor is executing
$_LAppdir The long filename of the directory from which WadAuthor is executing.
$_Dir The current working directory
$_LDir The long filename of the current working directory
$_Wadfile The filename containing the current map
$_LWadfile The long filename containing the current map
$_Mapname The name of the current map (“MAP01” for example)
$_Wadmap The warp parameter of the current map (“01” for example)

Tools List

The user-defined tools are listed here as they will appear when appended to the Tools menu.

Menu Text

The text used to identify the tool should be entered here.    This field cannot be blank.

Command

The command line to execute for the tool should be entered here.    Pressing the button to the immediate right
will invoke a browser dialog, allowing the user to navigate the directory tree selecting from a list of available
programs.

Arguments

The arguments to be passed to the tool should be entered here.

Initial Directory

The directory from which the tool should be launched.    Pressing the button to the immediate right will invoke a
browser dialog, allowing the user to navigate the directory tree.

Add

Adds a new tool to the list when clicked.

Remove

Removes the currently selected tool from the list when clicked.

Move Up

Moves the current selected tool up one slot when clicked.

Move Down

Moves the current selected tool down one slot when clicked.

Wait During Tool Execution

When checked, WadAuthor will wait until the tool has finished executing before allowing any further editing to
occur.

Wadgame Configuration Dialog
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

If any of the required wadgame information in the current configuration file is invalid, this dialog will be
presented on startup.    The user must supply correct information for the wadgame for which maps are to be
created or edited before continuing.    Pressing the Cancel button will invoke the configuration file dialog, allowing
you to choose a different configuration file altogether.    You may click on the controls in the illustration below for
more specific help.

Wadfile
The wadfile specifies the main data file for the wadgame.    It is from this file that the images displayed during
editing are extracted.

The button with the ellipses is for browsing the files on your drive(s).    Clicking it allows you to navigate
your directory structure to select a wadfile.

Name
The name field identifies the game for which the wadfile is intended.

New Map
The new map specifies the default name used when creating new maps.    It is based on the wadgame for which
the map is intended.    For example, DOOM uses the EeMm naming convention for maps where e is the episode
number and m is the mission number (i.e. episode one mission seven will have a map name of “E1M7”).

Example Wadfiles

The Hexen wadgame introduces so much new power for the wad designer, that I thought it necessary to include
some example wadfiles.    The following list briefly describes the examples that come with WadAuthor, providing
links to the appropriate help topics.

EX_GLASS.WAD

The purpose of this wadfile is to demonstrate use of the breaking glass script that WadAuthor uses by default.   
Click here for help understanding the Breaking Glass script.    This wadfile is designed only for Hexen and will not
work with any previous wadgame.

EX_POLYO.WAD

The purpose of this wadfile is to demonstrate use of a simple polyobject that provides swinging doors. Click here
for help Understanding Polyobjects.    This wadfile is designed only for Hexen and will not work with any previous
wadgame.

 Getting Started

If you are here because you want to get a new map created as quickly as possible, click the Tutorial button
above for a step by step walkthrough.    Otherwise, I suggest you take a few moments to peruse the following
topics first.

Using WadAuthor
Basic Vocabulary
Understanding Wadfiles
Understanding Wadmaps
Creating New Objects
Selecting Objects
Moving Objects
Editing Existing Objects
Deleting Objects
Making Things Happen
Understanding Polyobjects
Understanding Scripts
Understanding Texture Mapping

Common Questions
Why Does The “ Hall Of Mirrors ” Effect Happen?
Why Can ’ t I Just Draw Lines On The Map?
Why Won ’ t WadAuthor Run With A Sixteen Color Video Driver?
Why Is There No Sound When Running A Map?
Can I Customize The Game Graphics?

Important reminders, tips, and other useful bits of information are set off by the graphic used in this
example note.    Make sure you read items with this designation carefully.

Basic Vocabulary

It is important to establish a minimum working vocabulary to use WadAuthor effectively.    The terms you need to
understand before proceeding are summarized in the following table.    Consult the glossary for a more
comprehensive list.

Term Definition
Linedef A linedef defines a wall within a map.    A linedef has a starting vertex, an ending

vertex, and various other information.

Map A map is stored within a wadfile as a well-defined list of resources.    Each map
corresponds to a single “level” or “mission” when played.

Node building When a map is saved, quite a bit of information must be generated before the map
can be used in a game.    This information is allows the game engine to quickly
choose which walls need to be drawn for the player, avoiding time intensive
computations at run-time.    This process is referred to as node building.

Sector A sector defines a room within a map.    It contains lighting conditions, floor and
ceiling heights, and other information.

Sidedef A sidedef defines how a wall appears from a given side.    Each linedef may have
one or two sidedefs associated with it based on whether the player can ever see
the back side.

Thing A thing defines a single object within a map.    Most things interact with the player
in some way, although some are strictly scenery.    A few examples are weapons,
ammunition, and enemies.

Vertex A vertex defines a single point within a map via Cartesian coordinates.    For those
who don’t remember geometry, a Cartesian coordinate is a simple pair of
orthogonal values usually denoted by (x,y).

Wadfile A data file intended for use with several games from id software.    A wadfile
consists of a header, resources, and a resource directory.

Wadgame Wadgame is a term I have coined to refer to any game utilizing a wadfile.    A few
examples are DOOM, DOOM][, and HERETIC.

Understanding Wadfiles

A wadfile is simply a data file that adheres to the same format as the original DOOM.WAD file released with
DOOM.    A wadfile must have a header, a number of resources, and a directory.    Presumably, wadfiles were
given their name because they provide a simple way to store “wads of stuff.”    The header format, resource
format, and directory format are described in the sections that follow.    Non-technical types may wish to skip to
the next topic; all you really need to know to use WadAuthor effectively is that maps are stored within wadfiles.

Header
At the beginning of every wadfile, a twelve-byte header structure contains a four-byte signature.    The signatures
of which I am aware are listed in the following table.

Signature Description
IWAD Possibly short for “internal wadfile”, this denotes a main wadfile designed for use

with a wadgame.    The aforementioned DOOM.WAD is an example of an IWAD
wadfile.

PWAD Possibly short for “patch wadfile“, this denotes an add-on wadfile.    All new wadfiles
created by WadAuthor are initialized with this signature.

TWAD Short for template wadfile, this signature was introduced by DoomCAD, another
wad editing application for Windows.

Following the four-byte signature is a four-byte number which provides the number of directory entries in the
wadfile directory.    The remaining four bytes is a number which provides the offset, from the beginning of the
wadfile, at which the directory exists.

Resources
The resources within a wadfile exist in many formats, depending upon their purpose.    For example, map data,
image data, sound data, and textual data are all stored differently.    Because of this, I will offer no further
explanation here.    For those interested in learning more about the various resources, I would suggest that you
visit various internet sites or other on-line services for more detail.

Directory
A wadfile directory consists of a number of directory entries; the exact number, as explained above, is given by
the wadfile header.    Each directory entry is a sixteen-byte structure.    The first four bytes is a number providing
the offset, from the beginning of the wadfile, at which the resource exists.    The second four bytes is a number
providing the size, in bytes, of the resource.    The remaining eight bytes provides a textual name for the
resource.

Understanding Wadmaps

A single wadmap corresponds to a single mission or level within a given wadgame.    Wadmaps are stored within
a given wadgame’s main wadfile until needed at runtime.    The required wadmap resources and geometry are
explained in the sections that follow.

Resources
A wadmap is defined by a fixed series of wadfile resources.    Their names, listed in the order in which they
appear in the wadfile directory, and a brief description of their purpose are given in the following table.

Name Description
Mapname The map naming conventions vary between different wadgames.    For example,

DOOM uses the EnMn convention replacing the n’s with the episode and mission
numbers, while DOOM][uses the MAPnn convention, replacing the n’s with the two-
digit mission number.

THINGS The things resource contains the thing data for the map.
LINEDEFS The linedefs resource contains the linedef data for the map.
SIDEDEFS The sidedefs resource contains the sidedef data for the map.
VERTEXES The vertexes resource contains the vertex data for the map.
SEGS The segs resource is used to define ssectors.
SSECTORS The ssectors resource divides all of the sectors into convex polygons.
NODES The nodes resource contains branches in a binary space partition (BSP) that

partition the map.    It is used to determine which walls are in front of others.
SECTORS The sectors resource contains the sector data for the map.
REJECT The reject resource contains a two-dimensional matrix that determines whether

enemies in a given sector can detect or attack players in another sector.
BLOCKMAP The blockmap resource contains a series of tables that simplify collision detection

between walls and moving objects.
BEHAVIOR The behavior resource is only present in maps created for Hexen.    It contains

compiled script data for the map.
SCRIPTS The scripts resource is only present in maps created for Hexen and is optional.   

WadAuthor uses this resource to maintain the script code for a given map.    This
resource is a proposed standard accepted by some wad editors.

WadAuthor maintains the things, linedefs, sidedefs, vertexes, and sectors resources for a given map in memory.   
It is only when the map is saved that the segs, ssectors, nodes, reject, and blockmap resources are generated on
disk.    Because the node building process can be quite lengthy for large maps, WadAuthor only does it when
necessary.

You can use this information to your advantage by approaching map construction in two separate phases:   
creating and modifying.    If you complete your vertex-related editing chores during the creating phase, saving
your map during the modifying phase will be much quicker.    In general, any time you add a new vertex or delete
or move an existing vertex, your next save will incur the time hit for a complete node rebuild.

Geometry
You remember geometry, right?    Well, don’t worry, WadAuthor takes care of virtually all of the geometry
involved in creating new maps.    It is important, however, that you understand how the wadmap resources relate
to each other; otherwise, you risk creating a map that cannot be played due to one or more architectural errors.   
The following list provides a geometric overview of the relevant map object types.

n Vertexes define locations and are essentially points in the Cartesian plane.
n Linedefs are strung between vertexes and are essentially line segments.
n Sidedefs define how the front and back of a linedef appears from the player’s perspective.    They also

determine which sectors the front and back of a linedef face.    They have no geometric equivalent, true, but
they do provide the crucial link between linedefs and sectors.

n Sectors define some of the attributes of a “room” and are essentially polygons.

These simple relationships have some very important implications for budding map designers.    Some of the
most important points to grasp are listed below.

n Deleting a vertex will delete any linedefs that reference it.
n A linedef can be one-sided or two-sided.   
n A one-sided linedef is essentially a brick wall; it cannot normally be crossed and only has a front side.    A one-

sided linedef that has its back side facing the sector with which it is associated is going to produce the hall of
mirrors effect at runtime.

n A two-sided linedef can normally be crossed.    Because the sectors faced by its front and back sides can have
different floor and ceiling heights, great care must be taken in specifying the below, main, and above images
to avoid the hall of mirrors effect at runtime.

n Deleting a linedef can leave a sector open.    All sectors must be closed polygons for the node building process
to work.

n Deleting a sector affects its associated linedefs and vertexes.    One-sided linedefs are deleted, two-sided
linedefs become one-sided, and any vertexes no longer in use are deleted.

n WadAuthor is doing an awful lot of work for you behind the scenes!

Creating New Objects
{button ,KL(`New Objects',0,`',`')}    Related Topics

WadAuthor allows you to create two basic types of objects:    sectors and things.    Sectors may be created
anywhere within a map, while things must be created within an existing sector.    Sectors created in an unused
portion of the map have one-sided linedefs, separating them from the rest of the map.    Sectors created within
other sectors have two-sided linedefs, acting as sub-sectors through which the player can freely travel.    Step by
step instructions follow.

Creating A New Thing
n Right-click within an existing sector where the thing should be placed.
n Select the New Thing.. option from the context menu.
n Enter the desired parameters in the resulting dialog box and press the OK button to complete the new thing, or

press the Cancel button to abort.

Creating A New Rectangular Sector
n Right-click anywhere on the map roughly where the sector should be centered.
n Select the New Rectangular Sector option from the context menu.
n Enter the desired parameters in the resulting dialog box and press the OK button to complete the new sector,

or press the Cancel button to abort.

The vertexes of the new sector will be snapped to grid.

Creating A New Polygonal Sector
n Right-click anywhere on the map roughly where the sector should be centered.
n Select the New Polygonal Sector... option from the context menu.
n Enter the desired parameters in the resulting dialog box and press the OK button to complete the new sector,

or press the Cancel button to abort.

The vertexes of the new sector will not be snapped to grid.    This step is omitted to preserve the most
accurate shape for the given number of sides and radius.

Selecting Objects
{button ,KL(`Interface',0,`',`')}    Related Topics

WadAuthor provides several ways to select objects.    Most of them require setting the current object and
pressing a key or clicking with the mouse.    For more information, consult the related topics.

When a sector is selected, all of the linedefs associated with it are also selected.    This is mainly to provide
some kind of visual feedback to the user, although it is also useful for various editing operations.

Moving Objects
{button ,KL(`Interface',0,`',`')}    Related Topics

WadAuthor supports the drag and drop interface found in many Windows programs.    To move an object or group
of objects, select them, then click and hold the primary mouse button on one of the selected objects.    Move the
mouse and use the helpful wire-frame display WadAuthor supplies to position the objects at the correct final
location.    Release the mouse button to complete the move operation, or press the escape button at any time to
abort the procedure.

When the snap to grid feature is enabled, WadAuthor allows the user to temporarily disable it during a
drag operation by holding down the shift key.

Editing Existing Objects
{button ,KL(`Interface;Properties',0,`',`')}    Related Topics

Editing existing objects is a two step process of selection and manipulation.    Whenever possible, WadAuthor
supports direct manipulation of an unlimited number of objects of varying types.    The most frequently useful
editing operations are available through the context menu.    Once the desired objects are selected, you may
manipulate them.    The following list describes some of the most useful operations made available by the
context menu.    For more information, consult the related topics.

n Flipping a linedef can reverse only the starting and ending vertexes or reverse the sidedef data as well.   
Avoid this feature unless you know what you’re doing!

n Splitting a linedef (or linedefs) inserts a new vertex at the center of the line.    This allows the user to quickly
reshape a given sector as desired.

n Joining two linedefs is a fast means for connecting two sectors; select the first linedef, select the linedef to
which it should be joined, and select the join option from the context menu.    The first line will “move” to join
the second.

n Joining two vertexes is a fast means for getting rid of a linedef or fixing a problem with an un-closed sector. 
Select the first vertex, select the second vertex to which it should be joined, and select the join option from the
context menu.    The first vertex will “move” to join the second.

n Creating a door manually is difficult at best; using WadAuthor is much simpler.    Select any single four-sided
sector that connects two other sectors and select the door conversion option from the context menu.

n Scaling or rotating a sector usually implies moving each associated vertex manually.    Select any single
sector, and select the desired option from the context menu.

n Creating a staircase is a lot of work; using WadAuthor is much simpler.    Select any single four-sided sector
and select the stair conversion option from the context menu.

n Editing object properties is probably the most common operation.    Select any number of objects and
select the Properties... option from the context menu.

Deleting Objects
{button ,KL(`Check Map Dialog',0,`',`')}    Related Topics

Deleting objects deserves its own help topic because of the relationships between the different object types.   
Deleting the wrong objects can render a map unplayable, and require you to delete entire regions of the map to
fix the problem.    So, it is important that you understand the ramifications of deleting something.    The following
sections provide more information.

Cascade Effect
Deleting a single object can cause many other objects to be deleted, and I call this the cascade effect.    For
example, a linedef requires two vertexes, so deleting a vertex will necessitate deleting any linedefs that are
attached to it.    Sectors are made up of linedefs (actually they’re referenced by sidedefs which are referenced by
linedefs), so if deleting a vertex results in the deletion of any remaining linedefs in a given sector, the sector will
also be deleted.

WadAuthor properly cascades a delete operation for you.    For any objects that you delete, WadAuthor will
make sure that any orphaned objects are similarly removed.

Corruption
It is all too easy a thing to corrupt a map.    The most common source of problems is from deleting something
that needs to be there.    For example, a novice might see the linedef between two connecting sectors and figure
it shouldn’t really be there — after all, the player can’t walk through walls, right?    If you suspect that a delete
operation may have corrupted your map, use the map checking tool before saving the map to find out for sure.   
If you have open sectors or other errors of that nature, you should probably undo the delete operation.

Making Things Happen
{button ,KL(`Tags',0,`',`')}    Related Topics

The wadgame environment is a dynamic one; that is, architectural features can change over time independent of
or in response to a variety of conditions.    In every case, however, achieving a desired effect is a matter of
configuring linedefs and sectors.    The following sections group these dynamic features into three categories:   
sector effects, simple linedef effects, and complex linedef effects.

Sector Effects
Depending on the wadgame, different sector types can be used to achieve a several effects.    Flickering lights,
floors that damage the player, and ceilings that drop or rise are common across all wadgames, while only the
most recent allow the map designer to express ideas like moving water or wind.    Sector-based effects are
achieved by selecting one of the non-normal sector types from the sector properties dialog.

Simple Linedef Effects
Simple linedef effects are those which do not require the use of tag numbers.    Examples of these include
horizontally scrolling wall images and local doors.    To achieve a simple linedef effect, select the desired linedef
type from the linedef properties dialog — that’s it.    Granted, this isn’t much of an explanation, but then these
are supposed to be simple...

Complex Linedef Effects
Complex linedef effects are those which require the use of tag numbers.    Examples of these include remote
doors, lifts, et. al.    Achieving a complex linedef effect is a matter of choosing the linedefs that trigger it,
choosing the sectors it should affect, setting the tag numbers to match, and enjoying the results.    For a step by
step example on creating a remote door, check the related topics.

The Hexen wadgame adds a new realm of possibilities for wadfile design.    By avoiding the use of a fixed set of
codes for linedef actions in favor of a system of specials and scripts, there is little the wadfile designer cannot
achieve.    This comes, of course, at the expense of simplicity.

Understanding Texture Mapping
{button ,KL(`Textures',0,`',`')}    Related Topics

 Understanding wadgame texture mapping is, perhaps, the most difficult concept involved in creating good
maps.    More specifically, understanding how to achieve the desired texture alignment is somewhat complicated. 
The following sections explain wadgame texture mapping and the factors that affect it.    For purposes of
illustration, I have created a default texture, 128 units square, shown to the left.    I will use this texture in all my
examples.    Because the following explanation is fairly lengthy, you may click on any of the sections listed below
to quickly jump to that section.

Sections
Sidedef Textures - Basics
Sidedef Textures - Main
Sidedef Textures - Below And Above
Sidedef Textures - Manual Adjustments
Sidedef Textures - Common Applications
Sector Textures

Sidedef Textures - Basics
Every sidedef, for purposes of texture rendering, is broken into three distinct areas:    the area below the sector’s
floor, the area between floor and ceiling, and the area above the ceiling.    Each area may have a different texture
name assigned to it.    If no texture is needed, a hyphen is used for the null texture.    The texture names cannot
be left blank — this will cause an error at runtime.    WadAuthor refers to the textures used for these areas as the
Below, Main, and Above textures.   

Wadgames render each area by tiling its texture horizontally and vertically until the entire area is covered.    The
texture will be truncated in either direction if the area dimensions are not an even multiple of the dimensions of
the texture.   

Textures whose vertical dimension is anything other than 64 or 128, stair runners for example, do not
always tile well vertically.    They sometimes result in small pink or multi-colored “cracks” appearing between the
tiling.    This is due to a bug in the rendering engine.

Sidedef Textures - Main
The vertical axis is handled differently for the three areas.    Let’s begin with the main area, since it is the most
commonly used.    By default, the main texture is mapped from top to bottom.    This can cause problems if the
overall sector height, the difference between floor and ceiling, is not equivalent to the texture’s vertical size.   
The following illustrates two possible cases.

Here the sector is taller than the texture.    Notice how the texture is tiled.    If the texture had some distinctive
feature at its bottom end that was designed to meet the floor, we’d have a real problem.

Here the sector is shorter than the texture    Notice how the texture is truncated.    In this case, a distinctive
feature at the bottom end of the texture would be truncated.

As you can see, potentially undesirable results occur in both cases.    Fortunately we have a way to modify the
rendering behavior.    Linedefs have two attributes that change the manner in which textures are vertically
rendered.    The lower unpegged attribute applies to the main and below textures, and the upper unpegged
attribute applies to the above texture.    The lower unpegged attribute will cause the main and below textures to
be reverse rendered, from bottom to top.    The following table illustrates the previous cases with the lower
unpegged attribute set.

Notice how setting the lower unpegged attribute has made the bottom of the texture meet the floor.    This can
be particulary important when working with high ceilings.

In this case, the aforementioned distinctive feature would still appear connected to the floor.    Our player may be
crouching, but at least the walls look good...

As you can see, the texture is now being mapped from bottom to top.    Setting the lower unpegged attribute can
quickly solve most main texture alignment problems between sectors with the same floor height but different
ceiling heights.

Setting the main texture to something other than the null texture can provide an interesting effect with a
two-sided linedef.    By setting one side of a linedef’s main texture to null and the other side to something else, you
effectively create a wall that isn’t.    It appears to be solid from one side, but is transparent from the other.    Imagine
the player’s surprise when something big and nasty comes tromping through the wall after him!

Sidedef Textures - Below And Above
The issue is further complicated by the below and above textures.    A linedef may be two-sided, having different
sectors on either side.    If the floor and ceiling heights of the first sector match that of the second, there’s no
problem.    When they differ, the below and above textures become important.    The below texture will be
required when looking into a sector whose floor height is greater than that in which the player is standing.    The
above texture will be required when looking into a sector whose ceiling height is less than that in which the
player is standing.

If the ceiling texture of both sectors is F_SKY1, the upper textures between them will always be invisible.   
This is, apparently, a special case to allow map designers to include outdoor scenes.

By default, the below texture is mapped from top to bottom, while the above texture is mapped from bottom to
top.    If this seems fairly innocent, consider the illustration to the left, a simple example of a window.    A window
is usually a small sector whose floor and ceiling are higher and lower than the surrounding sectors.    In this
event, the textures will be improperly aligned with the surrounding non-windowed walls.

As shown to the left, by setting the upper and lower unpegged attributes, we can fix this problem.    The above
texture will be rendered top to bottom, while the below texture will be rendered bottom to top.

Just when you thought the pain was over...    I am sorry to say there is a single remaining complication with
vertical texture alignment.    In the above example, the sector in which the player is standing is the same height
as the texture.    If this is not the case, the textures will still be aligned, but perhaps not as one might suspect.    If
the sector in which the player is standing is shorter than the texture height, the bottom of the textures will be
clipped as shown in the following illustration.

This probably seems confusing; after all, I just explained how lower unpegged renders from bottom to top, right? 
Here’s the catch:    rendering from bottom to top does not necessarily start at the bottom of the given texture.    It
selects its starting point within the texture based on the distance from floor to ceiling.    It may seem confusing,
but it’s all done to allow nice alignment of sidedef textures.

Now for the easy part.    In each area, the texture mapping proceeds along the horizontal axis from the left edge
of the wall to the right, as seen from the player’s perspective.    This is not usually a problem except in a few
cases.    For example, a staircase usually consists of many small sectors with consistently varying heights
connected together.    If the sides of the staircase are visible, the horizontal textures will probably need to be
aligned.    The following illustration demonstrates a rising staircase using the example texture for the below
texture.    Notice the horizontal and vertical alignment problems.   

The vertical alignment can be fixed by applying the appropriate unpegged attribute.    The horizontal alignment
problem provides a good lead in for the next section...

Sidedef Textures - Manual Adjustments

There are some situations in which it is necessary to make manual adjustments to the texture alignment.    The
previously mentioned horizontal alignment problem with a rising staircase, for example, requires an offset value
for the textures to be tiled properly.    The offsets determine how far into the texture rendering starts, and they
may be positive or negative.    Values larger than the size of the texture will wrap.    WadAuthor provides editing
of these offsets via the linedef properties dialog.

Calculating the horizontal offset is usually pretty simple.    Calculating the vertical offset requires more work.   
The three factors to consider are the ceiling height of the current sector, the ceiling height of the adjacent
sector, and the height of the texture.    The desired offset will almost always be the difference between two of
these values.

Sidedef Textures - Common Applications
Having provided such a wealth of information, it’s time to get to the good stuff:    applying the knowledge.    The
following list details the most common situations in which texture alignment can be a problem.

n Doors are usually implemented as a sector where the ceiling height is the same as the floor height.    When
the door is shut, the player sees the above texture.    When the door opens, the ceiling of the door sector rises. 
None of the unpegged attributes are set; this lets the door image rise with the ceiling since the above texture
is based at the bottom edge of the rising ceiling.    The sidedefs making up the inside tracks of the door are
usually one-sided and thus need only a main texture.    Because main textures are rendered from the ceiling
down, the inside tracks will rise as the door opens.    This is usually not desirable.    By setting the lower
unpegged attribute for the inside tracks, they will be based on the non-changing floor and will remain
stationary.

n Secret doors add a little complexity if the door is to blend in with the surrounding wall.    When the door is
closed, the player normally sees the above texture, from floor to ceiling.    Since the upper texture is rendered
from the bottom up, the bottom of the door, where it meets the floor, will show the bottom of the texture.    If
the room has a non-standard ceiling height, the adjacent sidedef will not be vertically aligned with the closed
door.    The simplest solution is to set the lower unpegged attribute for all adjacent sidedefs, making them
render bottom up as well.

n Switches get shifted towards the floor if the sidedef to which they are applied is shorter than the switch
texture.    To place the switch at a better vertical position, set the lower unpegged attribute.    The sidedef will
render bottom up, and the switch will always be at a constant height.

Sector Textures
The floor and ceiling images are all 64 units square.    Unlike sidedef textures, their alignment is very simple; they
are aligned with an underlying 64 unit grid.    Because of this, floor and ceiling textures will always be tiled
seamlessly within any given sector.    The only problem arises with images that contain special markings,
teleporter pads for example.    The sector in which these textures appear must be exactly aligned to a 64 unit
grid to insure proper alignment.

Image List Control

WadAuthor uses image list controls to provide a consistent method for image selection.    Image list controls
behave like a standard Windows edit control with a few significant enhancements.    The following table
summarizes the additions to the normal keyboard interface.

Key Results
F2 Invokes the image browse dialog for full-size side-by-side graphical selection.    The

remaining keystrokes allow navigation of the list displayed by the image browse
dialog without the graphical overhead.

Up Arrow Selects the previous image.
Down Arrow Selects the next image.
Page Up Selects the image one page above the current image.
Page Down Selects the image one page below the current image.
Ctrl+Home Selects the first image in the list.
Ctrl+End Selects the last image in the list.

When typing an image name, the image list control will perform an incremental search to help find the desired
texture with the fewest number of keystrokes.

Remember, the null texture is represented as a hyphen and is only allowed for walls, not ceilings or floors.   
Click here for more information about texture mapping.

Relative Change Control

WadAuthor uses relative change controls to provide some shortcuts for assigning numeric values.    Relative
change controls behave like a standard Windows edit control with a few enhancements.    The following table
summarizes the numeric prefixes understood by a relative change control.

Prefix Results
++/-- A double plus or minus prefix will add or subtract the specified value from the

original value.    For example, when setting a sector light level, entering a value of +
+10 would increase the existing value by 10 units.

+++/--- A triple plus or minus prefix will add or subtract the specified value to an
appropriate reference value.    For example, when setting a sector ceiling height,
entering a value of +++128 would make the ceiling 128 units above the floor.

The triple plus or minus prefixes are only meaningful when a reference is available.    For example, a floor
can be adjusted relative to the ceiling, but a lighting level has no reference — a triple plus.or minus would be
interpreted in the same way as a double plus or minus.

[Files] Section

This section maintains data file settings.    The following table explains the entries that may appear in this
section.

Entry Default Description
ConfigFile DOOM.WCF Specifies which wadgame configuration file to use.
MakeBackups 1 Determines whether WadAuthor creates backup files

during a save operation.
NodeBuilding 1 Determines whether WadAuthor doesn’t build

nodes, uses its internal code, or calls an external
program for node building during a save operation.

ExternalNodeBuildCmd (none) Specifies the command line to be executed when
performing an external node build.

ExternalNodeBuildShow 0 Determines whether the child process launched for
an external node build is visible.

[Caching.Images] Section

WadAuthor accesses all wadfile images through a caching system that maintains the most frequently used
images as bitmaps.    More specifically, two separate caches are used, separating images into two categories:   
sprites and everything else.    Sprite images are used for displaying things and are accessed quite frequently
when sprite bitmap viewing is enabled.

The caching systems are initialized whenever a wadgame configuration file is read.    This will occur once at
startup and again whenever you select a different wadgame configuration file.    The following table explains the
entries that may appear in this section.

Entry Default Description
Sprites 25 for Windows 3.x

50 for Windows95
75 for Windows/NT

Sets the number of sprite images maintained as
bitmaps.

Other 25 for Windows 3.x
50 for Windows95
75 for Windows/NT

Sets the number of other images maintained as bitmaps.

A value of zero will disable the given cache.    A value of negative one will cause the cache to be allocated
large enough to cache all applicable images within the wadgame’s main wadfile.    Using negative one can be very
effective when using Windows/NT.

[General] Section

WadAuthor maintains general options in this section.    The following table explains the entries that may appear
in this section.

Entry Default Description
UnlimitedUndo 1 Determines whether WadAuthor allows unlimited undo up to

the limits of system memory.
RestoreState 1 Determines whether WadAuthor remembers the initial frame

window position and extents.

[Recent File List] Section

This section is used to maintain the list of most recently accessed files on the File menu.    The entries in this
section will always be like the sample shown below.

FileN = Filename

In the example, N provides the number by which Filename will be listed in the most recently used section of the
File menu.

[Views] Section

This section is used to maintain defaults for the wad editing views.    The following table explains the entries that
may appear in this section.

Entry Default Description
StartMaximized 0 Determines if WadAuthor will maximize document

windows when opened.
ShowGrid 1 Determines if WadAuthor initially shows the grid in new

map editing views.
ShowThingBitmaps 1 Determines if WadAuthor initially shows things as bitmaps

in new map editing views.
SnapToGrid 1 Determines if WadAuthor initially snaps objects to the

current grid in new map editing views.
UseDragCursor 1 Determines if WadAuthor displays the standard document

cursors during a drag operation.

[Window.X] And [Dialog.X] Sections

Many of the dialog boxes and windows maintain their position information or other private data.    This
information is stored in separate sections within the INI file.    The section name, as suggested by the title of this
help topic, is always formed by appending the internal name of the window or dialog to the appropriate
identifier, separated by a period.    For example, the check map dialog stores its private data in a section named
[Dialog.CheckMap].    The following table explains some of the entries that may commonly appear in these
sections.

Entry Default Description
Position (none) Specifies the screen position in x,y format at which the given

window or dialog will appear.
Extents (none) Specifies the width and height in cx,cy format to which the given

window or dialog will be sized.
Show (none) Specifies the manner in which the window or dialog will initially be

shown (normal, maximized, minimzed, etc.).

Position and extent data may be adjusted if you have changed screen resolutions since the last time it was
updated.    Every effort will be made to restore the previous settings, but the position and extents will always be
clipped, if necessary, to fit the available screen resolution.

Map Editing View
{button ,KL(`Interface',0,`',`')}    Related Topics

The map editing view provides the primary interface in WadAuthor.    It is a graphical representation of a map
that allows the user to manipulate the things, vertexes, linedefs, sidedefs, and sectors therein.    You may click on
any of the following topics for more information about the map editing view.

Map Editing View Legend
Toolbars
Toolbar Docking Areas
Status Bar
Configuring The View
The Current Object
Manipulating Objects

Map Editing View Legend

The illustration below shows the view for a rather trivial map which I have constructed.    The sections that follow
provide some additional information about the various objects that appear within the image.

Things
The tiny colored squares represent things.    The color and size used for each thing is specified in the wadgame
configuration file.    By learning the different colors and relative sizes, one can quickly get an overall impression
of how a given map is populated.   

When the zoom is set high enough (usually at maximum or one step less), actual bitmap images of the things
will be displayed if thing bitmaps are enabled.    WadAuthor will only display the bitmap images at high zoom
levels to preserve reasonably accurate placement information.

Vertexes
The almost imperceptible rectangles that appear at the ends of linedefs represent vertexes.    Vertexes may be
moved, deleted, or joined, but they have no properties to edit.

Linedefs
Linedefs are probably the most visible objects, since they provide the map outline.    Notice that each linedef has
a proportionately smaller perpendicular line extending from its center; this indicates the direction in which the
line is facing.    The smaller line protrudes from the front sidedef of the linedef; the opposite side is, of course, the
back sidedef.

Sectors
Sectors are actually made visible by their associated linedefs.    In the image above, there is a single pentagonal
sector in which the things exist.

Toolbars
{button ,KL(`Full Screen Command',0,`',`')}    Related Topics

Toolbars are normally displayed across the top of the application window, below the menu bar.    They provide
quick mouse access to many useful commands in WadAuthor.    You may click on any of the buttons in the images
below for details about the command it invokes.

Standard Toolbar

View Toolbar

User-Defined Toolbar

Full Screen Toolbar
The full screen toolbar, shown in the illustration below, is only visible when full screen mode is enabled; check
the related topics for more information about full screen mode.

Toolbar Docking Areas
{button ,KL(`Interface',0,`',`')}    Related Topics

The toolbars in WadAuthor may be docked at the left, right, top, or bottom of the main window, or they may float
singly or in groups.    To dock a toolbar, drag it near one of the toolbar docking areas and drop it.    To undock a
toolbar, drag it away from the docking area to which it is currently attached.

Holding down the control key while dragging a toolbar will prevent it from docking.

Status Bar

The status bar, shown in the illustration below, is displayed at the bottom of the WadAuthor window. You may
click on any of the panes in the image below for details about the information displayed within.

Configuring The View
{button ,KL(`Interface',0,`',`')}    Related Topics

Configuring the map editing view involves scrolling, zooming, and enabling or disabling a few options.    For
details, consult the related topics or click the following button for a list of view commands.

{button          List of View Commands        ,KL(`View Commands',0,`',`')}

The Current Object
{button ,KL(`Interface;Object Filter Dialog;Tags',0,`',`')}    Related Topics

As the mouse cursor moves over objects on the map editing view, the object underneath the cursor is
highlighted.    An abbreviated textual description of the object also appears in the status bar.    This highlighted
object is called the current object.    WadAuthor supplies this feature to make object selection easier —
particularly in crowded regions of the map.    Understanding how WadAuthor selects the current object can help
you get to a desired object more quickly.    The following sections explain how the current object is chosen.

No Object Filtering
By default, WadAuthor starts without an object filter setting.    This allows the user to work with all of the different
object types at once, without requiring separate modes of operation for each type.    Each time the mouse is
moved, WadAuthor finds the nearest thing, vertex, and linedef; it also determines over which sector, if any, the
mouse cursor is positioned.    From these objects, WadAuthor then selects the closest object, as calculated from
the object’s center, and makes it current.

Using Object Filtering
If you are interested in a particular type of object, you may set the object filter.    Once the filter is set to a
specific type, WadAuthor confines its search for a nearest object to that type.    Because distance calculations will
only be performed for a single type, this can greatly improve performance on slower machines.

When the current object is tagged, WadAuthor will highlight all other objects sharing the tag number in a
different color.    This makes it easy to see which objects trigger actions.

Manipulating Objects

WadAuthor supplies features for creating, deleting, and editing objects.    For more information, click on one of
the following topics.

Creating New Objects
Selecting Objects
Moving Objects
Editing Existing Objects
Deleting Objects

Message Pane

The message pane describes actions of menu items as you use the arrow keys to navigate through menus.    This
area similarly shows messages that describe the actions of toolbar buttons as you depress them, before
releasing them.    If after viewing the description of the toolbar button command you wish not to execute the
command, then release the mouse button while the pointer is off the toolbar button.    This area is also used to
display various messages relevant to the current operation.

Wadgame Pane

The wadgame pane contains the name of the current wadgame, as defined by the current wadgame
configuration file.

Object Filter Pane

The object filter pane displays the object filter setting for the active view.

Thing Display Pane

The thing display pane displays the current thing display attributes.

Grid Spacing Pane

The grid spacing pane displays the grid spacing setting for the active view.

Zoom Pane

The zoom pane displays the current zoom setting for the active view.

Cursor Position Pane

The cursor position pane displays the location of the cursor, in wadmap coordinates, within the active view.

File Menu

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
New
Open
Select Configuration File
Close
Save
Save As
Print
Print Preview
Print Setup
Most Recently Used Files
Exit

 Edit Menu
 View Menu

 Tools Menu
 Window Menu
 Help Menu

Edit Menu

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
 Edit Menu

Undo
Cut
Copy
Paste
Delete
Select All
Force Node Build
Properties

 View Menu
 Tools Menu
 Window Menu
 Help Menu

View Menu

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
 Edit Menu
 View Menu

Full Screen
Zoom In
Zoom Out
Best Fit
Go To Bookmark
Set Bookmark
Increase Grid
Decrease Grid
Object Filter
Thing Display
Select Map
Statistics

 Tools Menu
 Window Menu
 Help Menu

Tools Menu

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
 Edit Menu
 View Menu
 Tools Menu

Customize
Options
Motifs
Tags
Check Map
Run Map

 Window Menu
 Help Menu

Window Menu

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
 Edit Menu
 View Menu
 Tools Menu
 Window Menu

New Window
Cascade
Tile Horizontally
Tile Vertically
Arrange Icons
Refresh
Window Numbers

 Help Menu

Help Menu

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
 Edit Menu
 View Menu
 Tools Menu
 Window Menu
 Help Menu

Help Topics
Search For Help On
How To Use Help
Register
About WadAuthor

Undo Command

The undo command reverses the effects of the last operation.    WadAuthor features multiple levels of undo,
limited only by system memory.

When a map is saved, the undo history is emptied.

Keyboard: Ctrl+Z
Alt+Backspace

Cut Command

The cut command removes the current selection and places it on the clipboard.

Keyboard: Ctrl+X

Copy Command

The copy command places a copy of the current selection on the clipboard.

Keyboard: Ctrl+C

Paste Command

The paste command inserts the contents of the clipboard into the current map at a user-specified    position.   
WadAuthor will allow you to specify the position by using the arrow keys to move the insertion point, or by
clicking the primary mouse button at the desired location.    Pressing the escape key will abort the operation.

The paste location determines which sector will be used as the parent for any linedefs requiring fixup
during the paste operation.

Keyboard: Ctrl+V

Delete Command

The delete command removes the contents of the current selection.

Keyboard: Delete

Select All Command

The select all command selects all objects in the current map as defined by the current object filter and thing
display options.    For example, if the object filter is set to linedef, all linedefs within the current map will be
selected.

Force Node Build Command

The force node rebuild command will cause a node building operation to be performed the next time the map is
saved — whether it is actually needed or not.

Properties Command
{button ,KL(`Properties',0,`',`')}    Related Topics

The properties command edits the properties of the current selection.    If there is no current selection, it displays
the document properties instead.

Keyboard: Alt+Enter

Join Vertexes Command

The join vertexes command joins the first selected vertex to the second.    This command can be used to reduce
the number of sides in a sector or closing open sectors.

Keyboard: J

Join Linedefs Command

The join linedefs command joins the first selected linedef to the second.    This command can be used to connect
two sectors so that the player may pass between them.

Keyboard: J

Split Linedef(s) Command

The split linedefs command divides all selected linedefs in half, inserting a new vertex at each center point.

Keyboard: X

Align Linedef Textures Command
{button ,KL(`Textures',0,`',`')}    Related Topics

The align linedef textures command adjusts the texture offsets to insure that the images will blend seamlessly
from the player’s perspective.

Flip Linedef(s) Command
{button ,KL(`Flip Linedef(s) Dialog',0,`',`')}    Related Topics

The flip linedefs command displays the flip linedefs dialog, allowing the user to specify how the front and back
sides of the linedef should be exchanged.

Apply Sector Motif Command
{button ,KL(`Motifs',0,`',`')}    Related Topics

The apply sector motif command displays the apply motif dialog, allowing the user to select a motif to be applied
to the selected sectors.

Rotate Sector Command
{button ,KL(`Rotate Sector Dialog',0,`',`')}    Related Topics

The rotate sector command displays the rotate sector dialog, allowing the user to specify the angle by which the
selected sector should be rotated.

Scale Sector Command
{button ,KL(`Scale Sector Dialog',0,`',`')}    Related Topics

The scale sector command displays the scale sector dialog, allowing the user to specify the percentage by which
the selected sector should be scaled.

Convert Sector To Stairs Command
{button ,KL(`Stairs',0,`',`')}    Related Topics

The convert sector to stairs command displays the convert sector to stairs dialog, allowing the user to change
the selected sector into a staircase as specified by the current stair motif.

Convert Sector To Door Command
{button ,KL(`Doors',0,`',`')}    Related Topics

The convert sector to door command changes the selected sector into a door as specified by the current door
motif.

Map Name Command
{button ,KL(`Map Name Dialog',0,`',`')}    Related Topics

The map name command invokes the map name dialog box to allow the user to change the name of the current
map.

Scripts Command
{button ,KL(`Scripts',0,`',`')}    Related Topics

The scripts command invokes the scripts dialog box to allow the user to change the script code for the current
map.

Edit Raw Data Command
{button ,KL(`Raw Data',0,`',`')}    Related Topics

The edit raw data command invokes one of the raw editing dialogs to allow the user to access the actual data
saved to disk for a given map object.    This feature should be used with caution.

Create Motif From Sector Command
{button ,KL(`Motifs',0,`',`')}    Related Topics

The create motif from sector command creates a new motif based on the selected sector.    To invoke the
command, select the sector, then click the secondary mouse button on it to invoke the context menu and choose
the Create Motif From Sector option.

Set Linedef Length(s) Command
{button ,KL(`Set Linedef Length(s) Dialog',0,`',`')}    Related Topics

The set linedef length command displays the set linedef length(s) dialog, allowing the user to specify a length for
the selected linedefs.

Make Linedefs Parallel Command
{button ,KL(`Make Linedefs Parallel Dialog',0,`',`')}    Related Topics

The make linedefs parallel command displays the make linedefs parallel dialog, allowing the user to specify
options to be used in performing the command.

New Command

The new command creates a new map and a new window in which to edit the map.

Keyboard: Ctrl+N

Open Command
{button ,KL(`File Open/Save Common Dialog',0,`',`')}    Related Topics

The open command displays the file open common dialog to allow the user to open a map from an existing
wadfile.

Keyboard: Ctrl+O

Select Configuration File Command
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

The select configuration file command displays the select configuration file dialog to allow the user select a
different wadgame configuration file.

Close Command

The close command closes the currently active map.

Keyboard: Ctrl+F4

Save Command
{button ,KL(`File Open/Save Common Dialog',0,`',`')}    Related Topics

The save command saves the currently active map.    If the map has not previously been saved, file save
common dialog will be displayed to allow the user to supply a filename.

Keyboard: Ctrl+S

Save As Command
{button ,KL(`File Open/Save Common Dialog',0,`',`')}    Related Topics

The save as command displays file save common dialog and saves the currently active map under a new
filename.

Print Command
{button ,KL(`Print Dialog',0,`',`')}    Related Topics

The print command displays print dialog to print the currently active map.

Keyboard: Ctrl+P

Print Preview Command

The print preview command displays a preview of the currently active map as it would appear when output to
the current printer.

Print Setup Command
{button ,KL(`Print Setup Dialog',0,`',`')}    Related Topics

The print setup command displays the print setup dialog to configure the current printer.

Most Recently Used File Command

The most recently used file commands open the wadfiles listed on the File menu.

Exit Command

The exit command closes the WadAuthor application.

Keyboard: Alt+F4

Help Topics Command

The contents command displays the help topics for the WadAuthor help file.

Keyboard: F1

When invoked from the keyboard, this will display help for the current context, if any, before defaulting to
the contents topic.

Search For Help On Command

The search for help on command allows the user to search the indexed list of available topics in the WadAuthor
help file.

How To Use Help Command

The how to use help command displays the Windows help on using the help file viewer.

Register Command
{button ,KL(`Register Dialog',0,`',`')}    Related Topics

The register command displays the register dialog which allows the user to authorize the software license.

Tip Of The Day Command
{button ,KL(`Tip of the Day Dialog',0,`',`')}    Related Topics

The tip of the day command displays the tip of the day dialog which provides useful information.

About WadAuthor Command
{button ,KL(`About Dialog',0,`',`')}    Related Topics

The about WadAuthor command invokes the about dialog.

Context Help Command

The context help command changes the cursor to the context help cursor.    Help will be provided for the next
menu item, button, dialog box, or other control upon which the user clicks.

Keyboard: Shift+F1

New Rectangular Sector Command
{button ,KL(`New Objects',0,`',`')}    Related Topics

The new rectangular sector command displays the new rectangular sector dialog and inserts the specified sector
into the map.

New Polygonal Sector Command
{button ,KL(`New Objects',0,`',`')}    Related Topics

The new polygonal sector command displays the new polygonal sector dialog and inserts the specified sector
into the map.

New Thing Command
{button ,KL(`New Objects',0,`',`')}    Related Topics

The new thing command displays the thing properties dialog and inserts the specified thing into the map.

Insert Object Command
{button ,KL(`New Objects',0,`',`')}    Related Topics

The insert object command displays the insert object dialog allowing the user to select a type of object to be
inserted into the map.

Keyboard: Insert

Customize Command
{button ,KL(`Customize',0,`',`')}    Related Topics

The customize command displays the user tools dialog to allow the user to customize the list of user tools.

Options Command
{button ,KL(`Options',0,`',`')}    Related Topics

The options command displays options dialog to allow the user to modify WadAuthor configuration settings.

Motifs Command
{button ,KL(`Motifs',0,`',`')}    Related Topics

The motifs command displays    the motifs dialog for the current wadgame configuration file.

Keyboard: Ctrl+M

Tags Command
{button ,KL(`Tags',0,`',`')}    Related Topics

The tags command displays the tags dialog for the current map.    This allows the user to add, modify, or remove
tags.

Keyboard: Ctrl+T

Check Map Command
{button ,KL(`Check Map Dialog',0,`',`')}    Related Topics

The check map command examines the currently active map for errors and, if any are found, displays check map
dialog to aid in fixing them.

Keyboard: Ctrl+K

Run Map Command

The run map command runs the currently active map using the run command specified in the current wadgame
configuration file.

Keyboard: Ctrl+R

User Defined Tool Command
{button ,KL(`Customize',0,`',`')}    Related Topics

The user-defined tool commands execute the user-defined command line and arguments.

Full Screen Command

The full screen command toggles the state of the full screen display mode.    Full screen mode hides the main
window caption, menu, toolbar docking frames, and status bar in order to allow open views to occupy the entire
screen.    When using full screen mode, the special full screen floating toolbar, shown in the illustration below ,
will be displayed.    Clicking the button will toggle full screen mode.

Keyboard: Ctrl+U

Zoom In Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The zoom in command increases the map editing view viewing scale.

Keyboard: Plus

Zoom Out Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The zoom out command decreases the map editing view scale.

Keyboard: Minus

Zoom In Max Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The zoom in max command increases the map editing view viewing scale to the allowed maximum.

Keyboard: Ctrl+Plus

Zoom Out Max Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The zoom out max command decreases the map editing view scale to the allowed minimum.

Keyboard: Ctrl+Minus

Object Zoom Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The object zoom command configures the map editing view scale to best fit the current object.

Keyboard: Z

Clear Object Zoom Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The clear object zoom command restores the map editing view scale to its original settings prior to the first use
of the object zoom command.

Keyboard: Shift+Z

Best Fit Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The best fit command centers the map within the map editing view and adjusts the scale so that the entire map
can be viewed at once.

Keyboard: Home

Go To Bookmark Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The go to bookmark commands restore the view position and zoom settings from the given bookmark number.

Keyboard: Ctrl+1 through Ctrl+9

Set Bookmark Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The set bookmark commands record the view position and zoom settings for the given bookmark number.

Keyboard: Ctrl+Shift+1 through Ctrl+Shift+9

Increase Grid Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The increase grid command increases the map editing view grid spacing.

Keyboard: Shift+Plus
]

Decrease Grid Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The increase grid command decreases the map editing view grid spacing.

Keyboard: Shift+Minus
[

Object Filter Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The object filter command displays the map editing view to specify the type of objects to edit.

Keyboard: Ctrl+F

Thing Display Command
{button ,KL(`Interface;Thing Display Dialog',0,`',`')}    Related Topics

The thing display command displays the thing display dialog to specify which attribute bits a thing should have
to be displayed.

Select Map Command
{button ,KL(`Select Map Dialog',0,`',`')}    Related Topics

The select map command displays the select map dialog to choose which map to edit within a multi-map
wadfile.

Statistics Command
{button ,KL(`Statistics Dialog',0,`',`')}    Related Topics

The statistics command displays the statistics dialog which provides some useful information about the current
map.

Show Grid Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The show grid command shows or hides the grid.    The current grid setting will be used for all alignment
operations; it simply will not appear within the map editing view.

Show Floor Grid Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The show floor grid command shows or hides the floor image alignment grid.    This grid setting may be used to
properly place sectors whose floor or ceiling images must be tiled correctly.

Show Thing Bitmaps Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The show thing bitmaps command enables or disables the use of thing bitmaps at high zoom settings.    Enabling
thing bitmap display provides a clearer picture of exactly what objects are within a given area, but disabling it
improves performance and minimizes graphics resource usage.

Snap To Grid Command
{button ,KL(`Interface',0,`',`')}    Related Topics

The snap to grid command determines whether or not WadAuthor will align objects with the current grid at the
conclusion of a successful drag and drop move operation.

Scroll Commands
{button ,KL(`Interface',0,`',`')}    Related Topics

A page scrolling command moves half the current map distance in the specified direction.    A line scrolling
command moves one-twentieth the current map distance in the specified direction.

Keyboard
Key Effect
Up Arrow Scrolls the view up by one line.
Down Arrow Scrolls the view down by one line.
Left Arrow Scrolls the view left by one line.
Right Arrow Scrolls the view right by one line.
Ctrl+Up
Arrow

Scrolls the view up by one page.

Ctrl+Down
Arrow

Scrolls the view down by one page.

Ctrl+Left
Arrow

Scrolls the view left by one page.

Ctrl+Right
Arrow

Scrolls the view right by one page.

Page Up Scrolls the view up by one page.
Page Down Scrolls the view down by one page.

The current map distance is derived from the current zoom setting.    As the zoom increases, scroll
commands change position by smaller amounts; as the zoom decreases, scroll commands change position by larger
amounts.

Object Filter Commands
{button ,KL(`Object Filter Dialog',0,`',`')}    Related Topics

An object filter command sets the object filter to a specified object type.

Keyboard
Key Effect
L Sets the object filter to linedefs.
N Sets the object filter to none.
S Sets the object filter to sectors.
T Sets the object filter to things.
V Sets the object filter to vertexes.

New Window Command

The new window command opens another window into the currently active map.    All editing operations are
synchronized across multiple windows into a single map.

Cascade Command

The cascade command re-arranges the open windows in a cascading fashion.

Tile Horizontally Command

The tile horizontally command re-arranges the open windows in a tiled fashion in the horizontal direction.

Tile Vertically Command

The tile vertically command re-arranges the open windows in a tiled fashion in the vertical direction.

Arrange Icons Command

The arrange icons command re-arranges any minimzed windows within the client area of the main window.

Refresh Command

The refresh command causes the currently active map to perform a complete redraw.

Keyboard: F5

Window Number Command

The window number command selects from the list of open windows on the Window menu.

Understanding Polyobjects

Polyobjects were introduced with the release of Hexen.    They allow the wad designer to create effects that are
simply not possible with other wadgames due to the self-imposed limitations of the game engines.    A polyobject
is a complex architectural feature whose location is resolved at map load time.    In English this means that a
polyobject is a polygonal object defined at one location on the map that appears in a different location at run
time.

There are several important points to making a polyobject work.    Without following them the map may refuse to
load, or the game may crash when the polyobject is triggered.    The important points are listed below.

n You must select a number between 1 and 255 to uniquely identify the polyobject to be created.    This number
is used during the construction.

n You must define the polyobject.    This is done so that the wadgame knows which linedefs to manipulate as part
of the object.    The simplest method to accomplish this is to let WadAuthor create the polyobject as a
polygonal sector of the desired number of sides, then apply the Polyobj_StartLine special to one of the linedefs
— supplying the polyobject number selected in the first step.    It is possible to manually specify the linedefs,
but it’s much easier this way.

n You must provide an anchor for the polyobject.    This supplies the wadgame with the point around which the
polyobject will rotate, slide, or whatever.    This is done by placing a polyobject anchor thing at the desired
position near the polyobject and setting the thing’s angle to the polyobject number selected earlier.

n You must provide a destination on the map to which the anchor will be translated at map load time.    This
supplies the wadgame with the final destination for the polyobject anchor.    This is done by placing a start spot
(crushing or non-crushing) at the location which the polyobject anchor should occupy at runtime and setting
the thing’s angle to the polyobject number selected earlier.

The following illustration is taken from the EX_POLYO.WAD that ships with WadAuthor. You may click on portions
of the illustration below for more specific help.

Door Polyobjects

These two sub-sectors are what will appear as doors from the player’s perspective.    The polyobject anchors and
map start spots are used to provide the wadgame engine with enough information to correctly move the
polyobjects into place.

Polyobject Anchors

The polyobject anchors are used as the points at which the polyobjects will be attached once they have been
translated to their final positions within the map.    In the case of doors, these points define the “hinges” around
which the door polyobject swings.

Each anchor point is associated with a start spot by matching up the numbers that appear in each thing’s facing
angle.    For example, the anchor with an angle value of one will get translated to the start spot with an angle
value of one.

If this seems like a bit of a hack, don’t worry — it is.    According to the specifications, polyobjects were already
supported before the thing tag code was in place, so the map designers were using the thing angle as an interim
solution.    By the time the thing tag code was ready, the designers did not want to go back and change all their
work.

Start Spots

The start spots are used as final destination points for the polyobject anchors.    Each anchor point is associated
with a start spot by matching up the numbers that appear in each thing’s facing angle.    For example, the anchor
with an angle value of one will get translated to the start spot with an angle value of one.

If this seems like a bit of a hack, don’t worry — it is.    According to the specifications, polyobjects were already
supported before the thing tag code was in place, so the map designers were using the thing angle as an interim
solution.    By the time the thing tag code was ready, the designers did not want to go back and change all their
work.

Raw Data Editing Dialogs

The raw data editing facilities of WadAuthor are only for wadfile editing experts.    When a single object is
selected, the user may select the Edit Raw Data... option from the context menu.    Doing so will invoke one of
the raw editing dialogs, allowing the user to change the actual data stored to disk for each map object.    The
feature should be used with extreme caution as it can easily render a map un-playable.

 Reference

The reference section is a series of topics designed to explain various aspects of WadAuthor’s operation. You
may click on any of the topics listed below for more specific help.

Commands
Configuration Files
Context Menus
Dialogs
Glossary
Initialization File
Keyboard Interface
Menus
Motifs
Mouse Interface
Properties
Understanding Polyobjects
Understanding Scripts
Understanding Texture Mapping
Using Custom Images

Commands

The following button provides an alphabetized reference to the WadAuthor commands for which help topics
exist.

{button          List of Commands        ,KL(`Commands',0,`',`')}

Configuration Files
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

WadAuthor configuration files (WCF files) contain information specific to a given wadgame.    WadAuthor uses
them to locate the wadgame’s main wadfile, provide the naming convention for new maps, supply a textual
name of the game to the user, generate default motifs, and obtain data for all the different types of things,
linedefs, and sectors available in the given wadgame.    The format is somewhat similar to Windows initialization
files (INI files).

The configuration file data is loaded into memory during startup.    If you edit the file, you must either exit
the application and restart or read use the Select Configuration File command on the File menu to use your
changes.

Wadgame Section
A valid WCF file must contain a wadgame section at the top of the file.    The following example is taken from the
DOOM.WCF file that ships with the product.

[WadGame]
Name=DOOM
IWAD=DOOM.WAD
NewMap=E1M1
Directory=C:\DOOM
Run=$_Comspec /c doom.exe -file $_Wadfile -warp $_Wadmap -nosound

The Name entry provides a textual name for the wadgame, the IWAD entry provides WadAuthor with the
filename of the wadgame’s main wadfile, the NewMap entry provides the naming convention for new maps, and
the Directory entry provides the location where the wadgame is installed.    If any entry (except Run) in this
section is invalid, the wadgame configuration dialog will be invoked to allow the user to supply correct
information.

The Run entry cannot easily be validated; fortunately, it rarely requires alteration.    The Run entry is used to
launch the current wadgame to run the current map.    The $_Wadfile, $_Wadmap, and $_Comspec macros are
replaced at run time with the fully qualified pathname of the current map, the command-line parameter
appropriate to the map name, and the command shell processor.    You may wish to change the Run entry if a
special PIF file is required, or if you wish to perform batch-file processing when running a map.

The -nosound parameter is present by default to avoid crashing when running wadgames under Windows 3.1,
Windows for Workgroups 3.11, or Windows/NT.    Most users of Windows95 should be able to safely remove this
parameter, allowing the wadgame to supply sound effects and music during play.

The $_Wadmap parameter is formed by eliminating all non-numeric characters from the map name,
discarding leading and trailing spaces.    For example, E2M7 is transformed into 2 7 at run time.    If a wadgame that
violates this convention is released, you will need to obtain an updated copy of the software or modify the Run
entry manually.

Default Sections
A valid WCF file must also contain some default sections.    These are used to generate default sector, door, and
stair motifs in the event that a motif file cannot be located at startup.    The following examples are taken from
the DOOM.WCF file that ships with the product.

[Default.Sector]
Above=STARTAN2
Main=STARTAN2
Below=STARTAN2
Ceiling=CEIL3_5
Floor=FLOOR4_8
CeilingHeight=128
FloorHeight=0
Lighting=160

[Default.Door]
Base=FLAT1
Door=BIGDOOR2
Track=DOORTRAK
Type=1

[Default.Stair]
FloorRunner=STEP1
CeilingRunner=STEP1
Stairwell=METAL
FloorInc=8
CeilingInc=0
LightingInc=0

Other Sections
The data for all the different types of things, linedefs, and sectors available in the given wadgame follows these
sections.    The format of the information is documented within the WCF file and is subject to change in future
releases.    You may edit this data to suit your preferences, but I strongly urge you to create a backup copy of the
original WCF file first and proceed with caution.

Context Menus
{button ,KL(`Menus',0,`',`')}    Related Topics

Context menus, short for context-sensitive menus, are menus whose options are limited to those that are
appropriate within the current context.    To display an object’s context menu, select the object and press
Shift+F10, or click the object with the secondary mouse button.    The following sections describe the context
menu options that will appear when a given object is clicked.

Map Editing View
Menu Item Description
New Rectangular Sector Inserts a new square sector the size of a single grid, centered at

the menu position.    The sector is snapped to grid.
New Polygonal Sector Displays the new polygonal sector dialog, allowing the user to

insert a new sector of a specified radius and number of sides.   
The sector is centered at the menu position, but not snapped to
grid.

New Thing Displays the new thing dialog, allowing the user to insert a new
thing at the menu position.

Zoom In Increases the map viewing scale.
Zoom Out Decreases the map viewing scale.
Best Fit Alters zoom and position to fit the map to the available display

area.
Increase Grid Increases the grid spacing.
Decrease Grid Decreases the grid spacing.
Show Grid Shows or hides the grid.
Show Floor Grid Shows or hides the floor and ceiling image alignment grid.
Show Thing Bitmaps Enables or disables the use of thing bitmaps at high zoom

settings.
Snap To Grid Enables or disables alignment of objects with the grid.
Map Name Allows editing of the map name.
Scripts Allows editing of map script code.
Properties Allows editing of document properties.

Map Object
Menu Item Description
New Rectangular Sector Inserts a new square sector the size of a single grid, centered at

the menu position.    The sector is snapped to grid.
New Polygonal Sector Displays the new polygonal sector dialog, allowing the user to

insert a new sector of a specified radius and number of sides.   
The sector is centered at the menu position, but not snapped to
grid.

New Thing Displays the new thing dialog, allowing the user to insert a new
thing at the menu position.

Join Vertexes This item is only available when exactly two vertexes are
selected.    Joins the first vertex selected to the second.

Join Linedefs This item is only available when exactly two one-sided linedefs
are selected.    Joins the first linedef selected to the second,
connecting the two sectors.

Split Linedef(s) Splits all selected linedefs in half by inserting a new vertex at
each center.

Flip Linedef(s) Displays the flip linedefs dialog, allowing the user to reverse the
selected linedef direction and, optionally, sidedef data.

Set Linedef Length(s) Displays the set linedef length(s) dialog, allowing the user to
specify the length and anchor points for the selected linedefs.

Make Linedefs Parallel Displays the make linedefs parallel dialog, allowing the user to
specify the anchor and distance for the selected linedefs.

Align Linedef Textures Displays the align textures dialog, allowing the user to specify
which side to align and which texture to use for sizing information.

Apply Sector Motif This item is only available when at least one sector is selected.   
Displays the apply motif dialog and applies the motif selected to

the sectors.
Rotate Sector This item is only available if a single sector is selected.    Displays

the rotate sector dialog and rotates the sector by the specified
angle.

Scale Sector This item is only available if a single sector is selected.    Displays
the scale sector dialog and scales the sector by the specified
percentage.

Create Motif From Sector This item is only available if a single sector is selected.    It creates
a new motif based on the properties of the sector.

Convert Sector To Stairs This item is only available if a single four-sided sector is selected. 
Displays the convert sector to stairs dialog, allowing the user to
select some options and convert the sector to a staircase.

Convert Sector To Door This item is only available if a single that connects to at least one
other sector is selected.    Displays the apply motif dialog, allowing
the user to select a door motif and convert the sector to a door.

Edit Tags This item is only available if a single object capable of being
tagged is selected.    It allows the user to display the objects
sharing the given tag.

Edit Raw Data This item is only available if a single object is selected.    It allows
the user to edit the actual data saved to disk for a given map
object.

Properties This item is only available if at least one object other than a
vertex is selected.    Displays the appropriate property editing
dialog.

Dialogs

The following button provides an alphabetized reference to the WadAuthor dialog boxes for which help topics
exist.

{button            List of Dialog Boxes          ,KL(`Dialogs',0,`',`')}

Selecting A Different Configuration File
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

To create or edit maps for a different wadgame, you must tell WadAuthor which configuration file to use.    Close
all open maps and choose the Select Configuration File... option from the File menu.    The select configuration
file dialog box will be invoked to allow you to specify which configuration file WadAuthor should use.

Initialization File

WadAuthor makes use of a standard Windows initialization file (INI file) to retain most of its settings.    The file
exists in the same directory as WadAuthor and may be safely deleted at any time — it will be recreated the next
time WadAuthor is run.    The following topics explain each section of the INI file and the various entries found
therein.

[Files] Section
[Caching.Images] Section
[General] Section
[Recent File List] Section
[Views] Section
[Window.X] and [Dialog.X] Sections

Keyboard Interface
{button ,KL(`Interface',0,`',`')}    Related Topics

Although WadAuthor is, perhaps, at its best with a mouse or other pointing device, I have always been most
efficient when working from the keyboard.    The following sections describe the keyboard interfaces available
within WadAuthor.

Global Commands
The following commands are available from anywhere within the application.

Key Command Description
F1 Context

Help
Displays the help file for the current context.

Shift+F1 Context
Help

Enables mouse-driven context-sensitive help.

Main Frame Window
The main frame window is the main application window.    It is the window that contains all the open documents
and provides the toolbar and status bar.    The following commands are available when working with the main
frame window.

Key Command Description
Ctrl+N New Creates a new document.
Ctrl+O Open Opens an existing document.
Alt+F4 Exit Exits the application.

Map Editing View
Map editing views provide the primary WadAuthor functionality.    They display wadmaps and allow the user to
manipulate the objects within.

Map Editing View - File Commands
Key Command Description
Ctrl+N New Creates a new document.
Ctrl+O Open Opens an existing document.
Ctrl+F4 Close Closes the current document.
Ctrl+S Save Saves the current document.
Ctrl+P Print Prints the current document.

Map Editing View - Tool Commands
Key Command Description
Ctrl+M Motifs Displays the motifs dialog.
Ctrl+T Tags Displays the tags dialog.
Ctrl+K Check Map Checks the current map for errors.
Ctrl+R Run Map Runs the current map.

Map Editing View - View Commands
Key Command Description
Plus Zoom In Increases the viewing scale.
Minus Zoom Out Decreases the viewing scale.
Home Best Fit Alters zoom and position to fit the map to the available display

area.
Shift+Plus
or]

Increase
Grid

Increases the grid spacing.

Shift+Minus
or [

Decrease
Grid

Decreases the grid spacing.

Ctrl+Plus Zoom In
Max

Zooms in to the maximum allowed scale.

Ctrl+Minus Zoom Out
Max

Zooms out to the minimum allowed scale.

Up Arrow Scroll Up Scrolls the view up by one line.
Down Arrow Scroll Down Scrolls the view down by one line.
Left Arrow Scroll Left Scrolls the view left by one line.
Right Arrow Scroll Right Scrolls the view right by one line.
Ctrl+Up Arrow Page Up Scrolls the view up by one page.
Ctrl+Down
Arrow

Page Down Scrolls the view down by one page.

Ctrl+Left
Arrow

Page Left Scrolls the view left by one page.

Ctrl+Right
Arrow

Page Right Scrolls the view right by one page.

Page Up Page Up Scrolls the view up by one page.
Page Down Page Down Scrolls the view down by one page.
F5 Refresh Redraws the current map.
Z Object

Zoom
Zooms the map to best fit the current object.

Shift+Z Clear
Object
Zoom

Restores the original map settings prior to the object zoom
command.

Ctrl+U Full Screen Toggles the state of full screen display.

Map Editing View - Selection Commands
Key Command Description
Tab Next Object Sets the current object to the next object.
Shift+Tab Previous

Object
Sets the current object to the previous object.

Ctrl+F Object Filter Sets the object selection filter.
Ctrl+M Select Map Selects a map from a multi-map wadfile.
F2 Center On

Object
Centers the current map display on a specified object.

Shift+F10 Context
Menu

Displays the context menu for the selection.

T Filter Things Sets the object filter to things.
V Object Filter

Commands
Sets the object filter to vertexes.

L Object Filter
Commands

Sets the object filter to linedefs.

S Filter
Sectors

Sets the object filter to sectors.

N Filter None Sets the object filter to none.

The following thing display commands are only valid for wadgames other than Hexen.

1, 2 Thing
Display

Toggles the level 1/2 attribute for thing display.

3 Thing
Display

Toggles the level 3 attribute for thing display.

4, 5 Thing
Display

Toggles the level 4/5 attribute for thing display.

D Thing
Display

Toggles the deaf attribute for thing display.

M Thing
Display

Toggles the multi-player attribute for thing display.

The following thing display commands are only valid for Hexen.

1, 2 Thing Toggles the level 1/2 attribute for thing display.

Display
3 Thing

Display
Toggles the level 3 attribute for thing display.

4, 5 Thing
Display

Toggles the level 4/5 attribute for thing display.

D Thing
Display

Toggles the deaf attribute for thing display.

R Thing
Display

Toggles the dormant attribute for thing display

F Thing
Display

Toggles the fighter attribute for thing display

C Thing
Display

Toggles the cleric attribute for thing display

M Thing
Display

Toggles the mage attribute for thing display.

I Thing
Display

Toggles the single-play attribute for thing display

O Thing
Display

Toggles the cooperative-play attribute for thing display

H Thing
Display

Toggles the deathmatch-play attribute for thing display

Map Editing View - Edit Commands
Key Command Description
Delete Delete Removes the contents of the selection.
Insert Insert

Object
Inserts an object into the map.

Alt+Enter Properties Edits properties of the selection.
Ctrl+C Copy Copies the contents of the selection to the clipboard.
Ctrl+V Paste Pastes the contents of the clipboard into the current document.
Ctrl+X Cut Removes the contents of the selection to the clipboard.
Ctrl+Z Undo Reverses the effects of the last editing operation.
J Join

Vertexes or
Join
Linedefs

Joins selected vertexes or linedefs.

X Split
Linedefs

Splits selected linedefs.

Menus
{button ,KL(`Interface',0,`',`')}    Related Topics

Clicking a top level menu expands or contracts the list of menu items; clicking a menu item displays the help
topic for the item.

 File Menu
 Edit Menu
 View Menu
 Tools Menu
 Window Menu
 Help Menu

Motifs
{button ,KL(`Motifs',0,`',`')}    Related Topics

Motifs allow the map designer to more easily maintain a consistent look and feel when creating new architecture.
When new sectors are created, the current motif is applied to all appropriate sidedefs.    Motifs may also be
applied to existing sectors if the user has a decorative change of heart.

Because motifs are directly tied to a specific wadgame, the available motifs will depend upon the current
configuration file.    WadAuthor looks for motif files (MTF files) in the directory from which it runs when reading
data from the current configuration file.    It uses the base name of the wadgame’s main wadfile to determine
which motif file to use.    For example, if the wadgame’s main wadfile is DOOM.WAD, WadAuthor will look for
DOOM.MTF.    If WadAuthor cannot find a motif file for the current wadgame, it will create a default motif file.

To edit the list of available motifs or to select the current motif, choose the Motifs... option from the Tools menu.   
To manually apply a motif, select the sectors to which the motif should be applied, and choose the Apply Motif...
option from the context menu.

Mouse Interface
{button ,KL(`Interface',0,`',`')}    Related Topics

WadAuthor is, perhaps, at its best when used with a mouse or other pointing device.    I find the mouse to be the
most direct means for some operations.    The following sections describe the mouse interfaces available within
WadAuthor.

Map Editing View
Map editing views provide the primary WadAuthor functionality.    They display wadmaps and allow the user to
manipulate the objects within.

Primary Mouse Button (Usually Left)
Action Effect
Click Clicking an object will do one of two things:    if selected, a drag and drop

operation will begin; otherwise, the object will become selected.    Clicking an
empty area of the map will clear the selection.

Ctrl+Click Holding down the control key while clicking an object will toggle its selection state;
clicking an empty area of the map has no effect.

Alt+Click Holding down the alt key while clicking allows for very precise selection.    If
objects are too close together for the software to distinguish, use this method.   
Whenever more than one object is “near enough,” a dialog box will allow the user
to pick the specific object of interest.

Shift+Click Holding down the shift key begins a rubberband selection.    This allows the user to
select a range of objects in a single operation.    If the user does not drag a
rubberband selection, the object clicked will be added to the selection.

Double click A double click will clear the selection, select the object clicked (if any), and display
the properties dialog for the given object.

Ctrl+Double
click

Holding down the control key while double-clicking will center the map editing
view at the given location.

Secondary Mouse Button (Usually Right)
Action Effect
Click Clicking an object will do one of two things:    if selected, the context menu for all

selected objects will be displayed; otherwise, the object will become selected and
the context menu for the specific object will be displayed.    Clicking an empty area
of the map will display the context menu for the map itself.

Alt+Click As with the primary mouse button, holding down the alt key while clicking allows
for very precise selection.    Refer to the primary mouse button Alt+Click
explanation for more detail.

Properties
{button ,KL(`Properties',0,`',`')}    Related Topics

The term properties refers to the innate attributes or qualities of an object.    For example, a sector has a type, a
floor image and height, a ceiling image and height, a lighting level, and a tag number.    Property editing refers to
the process of changing object properties.    WadAuthor provides very powerful property editing through various
dialog boxes.    To edit an object’s properties, select the object and choose Properties... from the context menu,
choose Properties... from the Edit menu, or press Alt+Enter to display the appropriate dialog box.

 Registration
{button ,KL(`Registration',0,`',`')}    Related Topics

WadAuthor is not free.    If you use it, you must pay for it.    I believe in the shareware system because the “try
before you buy” approach is a great way to make sure you’re getting something you want.    In allowing you the
free use of this program for a time, I am extending you a degree of trust; please do not violate this trust.   
Remember, only you can make shareware work.

You may use WadAuthor free of charge for 15 days.    If, at the end of this time period, you decide that
WadAuthor is not for you, please stop using it and remove it from your system — better yet, pass it along to a
friend (or enemy if you really don’t like it).    If you decide to keep WadAuthor, you must register through one of
the means listed at the bottom of this topic.   

In exchange for registration, you will receive technical support, upgrades for the life of the product, access to
handy wadfile utilities, and the author’s gratitude — not to mention that pleasant lack of guilt that comes with a
clear conscience!    By registering WadAuthor, you will also get the chance to shape its future through your
comments and complaints.    Upon receipt of payment, you will be sent the information required to authorize the
software license.

CompuServe
Users of CompuServe can register WadAuthor while on-line.    To register WadAuthor via CompuServe, log on, GO
SWREG at the ! prompt, and follow the instructions.    The information you will need to complete the process is
displayed below.

Program Title:          WADAUTHOR
Registration ID:      6379
Fee (US$):                  20.00

Snail Mail
To register WadAuthor by snail mail, please send a check or money order, payable to Williston Consulting, in the
amount of $20 (U.S.) to the following address.   

Williston Consulting
12704 Bloomfield Ave. Apt. 126
Norwalk CA 90650

Along with your payment, you must enclose a message including the product name (WadAuthor), your name,
your company (if any), address, e-mail address (if any), and any comments you care to add.    A pre-prepared
order form is available by clicking on this topic’s title bitmap or by clicking below.

 Click here to view the WadAuthor order form.

Registration payments from countries outside the United States of America must be capable of being cashed by
a U.S. bank.    I will make every attempt to cash whatever I receive, but if I cannot do so, I will be forced to return
your order.    Alternatively, you may contact me to make any special arrangements for wire transfer of funds.    I
do not wish to discourage potential foreign users in any way; I simply have not found an alternative.

WadAuthor Order Form

Name: __

Company: __

Postal Address: __

__

__

E-mail Address: __

Comments: __

__

__

Copies: __

 Click here to print the form

Order Checklist
n Make sure that your name and address are clearly legible.
n Make sure you have indicated the number of copies desired.
n Make sure that your payment to Williston Consulting is enclosed.
n Make sure sufficient postage is affixed to the envelope.
n Make sure the address matches the address shown below.

Williston Consulting
12704 Bloomfield Ave. Apt. 126
Norwalk CA 90650

Understanding Scripts

The scripting capabilities introduced in Hexen add a whole new dimension to wadfile editing.    At the cost of a
little simplicity of understanding, the flexibility of the wadgame engine has been dramatically enhanced.    The
purpose of this topic is to give a wadfile-literate user a good introduction to scripts.    You may click on the
following topics for more information.

General
What Is A Script?
Why Are Scripts Compiled?
Where Is The Data Stored?
How Do I Use A Script?
What Is The Scripting Language?
Where Can I Get More Information?

Example
Breaking Glass
How Do I Use The Breaking Glass Script?

What Is A Script?

An Action Code Script, or ACS for short, is a series of instructions to be carried out.    Originally the script is
defined in terms of a C-like programming language.    Prior to run time, however, the script code must be
compiled into pcode form and stored with the map.

The term pcode is a kind of shorthand for pseudo-code.    It refers to instructions that are executed via an
interpreter.    Pcode is often used where a fully compiled set of instructions is undesirable, but fully interpreted
speed is unacceptable.    Visual Basic programs, for example, are actually compiled as a bunch of pcode
instructions of a different sort.

Why Are Scripts Compiled?

The scripts are compiled because Id/Raven Software decided to do it!    All kidding aside, I suspect the scripts
must be compiled for sake of performance and simplicity in the runtime environment.    As mentioned earlier, the
script data must be compiled prior to running the map, or else the script will not execute correctly.

Where Is The Data Stored?

The compiled pcode is stored in a new BEHAVIOR resource for each map.    WadAuthor stores the script code in
another resource after the BEHAVIOR resource named SCRIPTS.    This is a convention proposed by editor authors
to allow wadfile designers to share their code and ideas more easily.

When WadAuthor opens a map for which no SCRIPTS resource exists, it tries to decompile the existing BEHAVIOR
resource.    The decompilation, if successful, will provide source code similar to the code the wadfile designer
wrote.    WadAuthor cannot determine original variable names or provide the comments, but the essential code
will be preserved.

If the BEHAVIOR resource contains no scripts, a default file is read when script editing is desired.    Compiling and
saving edited script data will overwrite the original scripts for such a map, so caution should be exercised.    A
map can quickly be rendered unplayable by destroying some of the scripts required at runtime.

How Do I Use A Script?

Each script has a unique identification number that may be used in conjunction with the ACS_ special codes.   
For example, to trigger script number one when the player crosses a given linedef, the linedef type should be set
to ACS_Execute, the arguments should be set to the script number, map number, and script arguments (if any),
and the linedef activation should be set to Player crosses.

What Is The Scripting Language?

Programmers familiar with the C programming language will immediately recognize the scripting language as a
variant of C.    It supports many of the standard C language constructs including pre-processing, looping,
variables, etc.    For more information on the scripting language syntax, consult the official Hexen specifications
included with WadAuthor.

Where Can I Get More Information?

The official Hexen specifications provide more information about the scripting language.    A copy of the
specifications is included with WadAuthor for your convenience, although a newer version may be available
electronically.

Breaking Glass
{button ,KL(`Scripts',0,`',`')}    Related Topics

The following script is the default script shipped with WadAuthor, with comments removed for sake of brevity.   
This topic examines the script in a piece-by-piece fashion, explaining how it works and how to use it most
effectively within your Hexen maps. You may click on sections of the script below for more specific help.

This topic assumes that you already understand the scripting language; if you do not, consult the related
topics.

#include "common.acs"

script 1 (int iSector, int iThingTag1, int iThingTag2)
{

int i;

Floor_LowerInstant(iSector, 0, 16);
Thingsound(iThingTag1, "GlassShatter", 127);
delay(const: 1);

i = 10;
while (i-- > 0)
{

Thing_ProjectileGravity(iThingTag1,
random(T_STAINEDGLASS1, T_STAINEDGLASS0),
random(0, 255), random(10, 40),
random(5,20));

Thing_ProjectileGravity(iThingTag2,
random(T_STAINEDGLASS1, T_STAINEDGLASS0),
random(0, 255), random(10, 40),
random(5,20));

{
}

Common Declarations

#include "common.acs"

This first line includes the standard declarations used when creating scripts.    These were provided with the
script compiler from Raven/Id Software.    You do not have to use this file, but it sure is easier than creating your
own declarations.    Placing this line at the top of each script will insure that all specials, things, constants, and
other important declarations are available.

Script Declaration

script 1 (int iSector, int iThingTag1, int iThingTag2)

This line declares script number one.    The number assigned here is the script number you should use when
modifying a map object to trigger it.    Notice that I have named the arguments to provides clues to what they do.
The first argument has something to do with specifying a sector, while the remaining two specify thing tags.   
You can name the arguments as you see fit, but it is good programming practice to choose meaningful names.

Variable Declaration

int i;

This line declares a local variable named i that will be used later in the script.

Breaking The Glass

Floor_LowerInstant(iSector, 0, 16);
Thingsound(iThingTag1, "GlassShatter", 127);
delay(const: 1);

These lines make the glass appear to be broken.    The Floor_LowerInstant special will lower the floor of all
sectors having the iSector tag, thus exposing the main texture of the linedef instead of the below texture.

The Thingsound function plays the glass shattering sound all locations on the map where a thing with a tag of
iThingTag1 is located.

Finally, the delay function provides a brief pause to make the shattering appear more real.

Providing Fragments

i = 10;
while (i-- > 0)
{

Thing_ProjectileGravity(iThingTag1,
random(T_STAINEDGLASS1, T_STAINEDGLASS0),
random(0, 255), random(10, 40),
random(5,20));

Thing_ProjectileGravity(iThingTag2,
random(T_STAINEDGLASS1, T_STAINEDGLASS0),
random(0, 255), random(10, 40),
random(5,20));

}

The variable i that was declared earlier is now put to use.    By initializing it with a value of ten and decrementing
it each time the loop is executed, we cause the two calls to the Thing_ProjectileGravity special to be
executed ten times.   

Thus, a total of twenty randomly selected pieces of glass will be created at the locations on the map given by
things having the tag numbers passed to the script.    Use of the random function makes the effect quite realistic.

How Do I Use The Breaking Glass Script?

To use the breaking glass script requires some knowledge of how it works along with some specific objects in the
map.    The basic steps to construct an alcove that is hidden by breakable glass are listed below.

n Create an alcove sector adjacent and connected to the sector from which you wish the player to see the glass. 
Give it a unique tag number — this number will be used later.

n Make the sector’s floor height the same as the adjacent sector’s ceiling, and make sure the distance between
floor and ceiling in the alcove sector is the same as the distance between floor and ceiling in the adjacent
sector.

n Create two map spot things immediately in front of the shared linede. Set their Z coordinate to 32, and give
them both the same tag number — this number will be used later.

n Edit the linedef shared between the two sectors.    Set its main linedefs to a broken glass texture, set its below
linedefs to an unbroken glass texture, and set its activation code to trigger when hit by a projectile.    Set the
type to ACS_Execute, and set the special arguments for the current map, desired script number, sector tag,
thing tag number, and thing tag number.

Script code for the script number you supply must be available in the wadfile before the effect will work.   
New wads created by WadAuthor do not have any script code.    To compile the default code as part of your wadfile,
right click somewhere in an unused portion of the map, select Scripts... from the context menu, press the Compile
button, and press OK to accept the data.    If you have already edited the script code and deleted the glass breaking
script, the code exists within the DEFAULT.ACS file in the WadAuthor directory, and may be pasted into the scripts
dialog.

The following illustration is taken from the EX_GLASS.WAD that ships with WadAuthor. You may click on portions
of the illustration below for more specific help.

Tagged Map Spot Things

These are map spot things that share a common tag number.    I chose to use a common tag number to avoid
using more than two things.    By assigning the same tag number to both, I can cause the glass shattering sound
to play at the same locations from which the glass fragments are created.

Note that these things have their Z coordinate (height from the floor) set so that they are at the player’s
approximate eye level.    This makes the shattering effect more realistic, as the fragments of glass seem to emanate
from the point at which the glass was struck.

Tagged Sector

This is the sector whose tag number is passed to the script.    The sector is configured with the same overall
distance between floor and ceiling as its adjacent sector, but its floor height is equivalent to the ceiling height of
the adjacent sector.    This is done for a good reason.

When the script is triggered, the sector is lowered, and the shared linedef’s main texture is displayed in place of
the below texture.    By lowering the sector instantly (instead of smoothly like a lift), the breaking effect is
instantaneous.

Glass Linedef

This is the linedef that appears to the player as stained glass and cannot be crossed.    It cannot be crossed
because the tagged sector floor is at the same height as the adjacent sector ceiling.    The intact stained glass
image is applied to the linedef’s below texture.    When the tagged sector is lowered, the linedef’s main texture
will be displayed instead, and the linedef can then be crossed.

 Troubleshooting

I really hope you’re not reading this. There cannot possibly be any bugs in my code, right?    (*sigh*) Oh well,
back to reality.    The following section contains solutions for common problems, and instructions for getting
technical support.

Common Problems - WadAuthor
The Graphics Are Wrong
The Run Map Feature Fails
I Hear No Sound When Running A Map

Common Problems - Maps In General
Things Are Missing

When All Else Fails...
Getting Technical Support

The Graphics Are Wrong
{button ,KL(`Getting Technical Support',0,`',`')}    Related Topics

If the wadfile images are not displayed or are displayed incorrectly, it is probably due to an incompatibility
between your video card and the image acceleration code WadAuthor employs.    Try switching to a different
color depth to see if the problem goes away.    If the problem does not go away, please consult the related topics
for getting technical support.

The Run Map Feature Fails
{button ,KL(`Configuration Files;Getting Technical Support',0,`',`')}    Related Topics

If the run map feature fails, it is probably due to one of the following reasons.

n The run command is invalid.    Open the current wadgame configuration file in notepad (or some other text
editor), carefully examine the Run setting in the WadGame section, and fix any errors before trying again.

n You do not have enough memory to launch the wadgame.    Make more memory available or exit Windows
before running your map.

n There is some kind of problem with the map you’re trying to run.    Select Check Map... from the Tools menu
and fix any problems that WadAuthor finds before trying again.

n The WARUN.EXE utility does not exist in the same directory from which WadAuthor is running.    WadAuthor
uses this utility to launch the wadgame, and it must be present in the same directory as the WadAuthor
executable.

The run map feature was very difficult to support in a consistent manner across Windows, Windows95, and
Windows/NT.    It is possible that it will fail, even when none of the reasons given above apply.    If you simply
cannot get it to work, consult the related topics for getting technical support.

Things Are Missing

One of the most common problems for new wadfile designers is that of missing things.    A missing thing, in this
context, is a thing that is displayed by WadAuthor, but not present during actual game play.

The most common reason for this is that the thing attributes are set in such a manner that they prevent the
thing from appearing.    For example, a thing with the multi attribute will not appear in a single player game.

Getting Technical Support

If you are a registered user of WadAuthor, or if you are having problems getting the shareware version installed
and working, please contact me through one of the means listed below.

CompuServe 70541,1335

Snail Mail Williston Consulting
532 N. Forrest St. Apt. 26
Wayland MI 49348

Make sure to include the following information in your message.

n The product with which you are having the problem.
n The version of Windows that you are using.
n If a message is displayed, please include the full text including the caption of the dialog box.

n If the problem is reproducible, please include whatever steps are necessary to recreate the problem.

As a conscientious author, I will make every attempt to fix any bugs reported to me.    It is very difficult, however,
to fix bugs that I cannot reproduce.    So, the more information you can provide, the greater chance I have of
finding and squashing the bug.

Tutorial

The purpose of this tutorial is to highlight the best features of WadAuthor while guiding you through the
construction of a new map.    Novices should follow through the topics in the order in which they appear.    Others
may wish to use individual topics solely as a reference.

Throughout the tutorial, new terms are set off by the graphic shown to the left.    For a more comprehensive
list of important terms, consult the glossary.

If you make a mistake when performing any of the instructions in the following topics, don’t panic.    You
can always fix your mistakes by selecting Undo from the Edit menu.    You may continue to select undo until every
change you have made has been undone

 up to the point at which the map was last saved.

Simple Map Editing
Creating A New Map
Creating The First Room
Changing The Shape Of The Room
Rotating And Scaling The Room
Adding Players And An Enemy
Editing Map Object Properties
Creating A Hallway
Connecting The Hallway To The Room
Creating A Local Door
Providing An Exit
Playing The Map

Advanced Map Editing
Creating A Secret room
Creating A Remote door
Creating A Teleporter
Creating A Staircase
Creating A Rising Staircase

Suggestions
Develop Around A Common Theme
Consider Multi-Player Modes
Understand The Third Dimension
Record A Demo

Creating A New Map

Creating a new wadmap is simple.    Press the toolbar button or select New from the File menu.    A new
window will be created with an empty map ready for editing.    The window should look something like the
illustration below.

Creating The First Room
{button ,KL(`Context Menus;New Objects',0,`',`')}    Related Topics

To create the first room, click the secondary mouse button roughly where the center of the room should be.    The
resulting menu is the context sensitive menu, or context menu for short.    This menu will always provide only
those operations which are appropriate for the object clicked.

Select the New Polygonal Sector... option from the context menu, and enter the requested information in the
resulting dialog box.    Press the OK button to complete the process and create the new sector.

A sector roughly corresponds to a single room.    I say roughly because a room, from the player’s
perspective, can be made up of many different sectors to achieve different effects.

In the illustration below, I created a five-sided sector of radius 256 and re-scaled the map.    WadAuthor will scale
the map to best fit the available window when you press the Home key.    Try pressing Home and zooming around
with the plus and minus keys until you are satisfied with the display.

Changing The Shape Of The Room

To change the shape of an existing sector, click and hold the primary mouse button over one of the small
rectangles where two of a sector’s walls meet.    This will begin a drag and drop operation that will allow you to
position the given corner wherever you like.

The walls of a sector are called linedefs, and the small rectangles where linedefs meet are called vertexes. 
Linedefs always connect exactly two vertexes, so moving a vertex changes the overall shape of a given sector.   
Notice that each linedef has a small line at its center protruding inward toward the center of the sector.    These
lines indicate which side of the linedef is the front side.    This will become more important later on in the tutorial.

You may also change the number of sides that a given sector has by changing the number of linedefs.    Click the
secondary mouse button on any linedef for a given sector and select the Split Linedef(s) option from the context
menu.    This will create a new vertex in the center of the linedef, effectively splitting it in half.    You may then
position the new vertex, as described above, to modify the shape of the room.   

In the illustration below, I have split one of the linedefs and dragged the new vertex.

Rotating And Scaling The Room
{button ,KL(`Rotate Sector Command;Rotate Sector Dialog;Scale Sector Command;Scale Sector Dialog',0,`',`')}   
Related Topics

WadAuthor makes it very easy to retain the shape of a room while changing its overall size and orientation.   
Let’s try an example.   

Click the secondary mouse button somewhere within the sector, and select the Rotate Sector... option from the
context menu.    In the resulting dialog box, enter an angle and press the OK button.    The sector has been
rotated around its center by the specified number of degrees.

Now let’s change the size.    Click the secondary mouse button somewhere within the sector, and select the Scale
Sector... option from the context menu.    In the resulting dialog box, enter a percentage and press the OK button.
The sector has been scaled from its center by the specified value.

By applying different scaling and rotation to different sectors, it should be possible to create virtually any kind of
desired shape.    In the illustration below, I have applied a 30° rotation to the sector and scaled it by 150%.

Adding Players And An Enemy

To specify where the player will start within the map, we must create a player start thing at the desired location. 
Click the secondary mouse button somewhere within the sector and select the New Thing... option from the
context menu.

In the resulting dialog box, select Start in the class combobox, Player 1 in the type listbox, and a direction for the
player to face.    Make sure that the checkboxes labeled 1/2, 3, and 4/5 are checked before pressing the OK
button.

A map without enemies would be very boring indeed, so before continuing on, place an enemy somewhere
within the sector.    To do this, repeat the above procedure for adding a player start thing, selecting Enemy from
the class combobox and some nasty opponent in the type listbox.

In wadmap editing terminology, a thing is any object (other than walls, floors, etc.) with which the player
may interact.    Some things may be picked up and used (ammunition, healing, etc.), others function as scenery
(trees, pillars, etc.), and some are downright hazardous to the player’s health!

In the illustration below, I have added a player start thing, an enemy, and a weapon.

Editing Map Object Properties
{button ,KL(`Properties',0,`',`')}    Related Topics

Property editing is one of the most basic and most flexible operations in WadAuthor.    To edit the properties of an
existing map obect, select it and choose Properties... from the context menu, choose Properties... from the Edit
menu, or press Alt+Enter to display the appropriate dialog box.

Creating A Hallway

Click the secondary mouse button on a blank section of the map near the sector, and select the New Rectangular
Sector option from the context menu.    Enter the requested information in the resulting dialog box, and press the
OK button to complete the process.    Click and hold the primary mouse button on one of the linedefs and drag
and drop until you have a hallway similar to that shown in the illustration below.

Connecting The Hallway To The Room

Our map now features two sectors:    the room and the hallway.    We need to connect them so that the player
may move between them.    WadAuthor automates this process for you by allowing you to join two linedefs.   
Follow the following instructions closely.

n Click the primary button on the first linedef to be joined.
n While holding down the Ctrl key, click the primary button on the second linedef to which the first will be joined.
n Release the Ctrl key and click the secondary mouse button on either of the two selected linedefs.
n Select the Join Linedefs option from the context menu.

It is very important that you use this method for connecting sectors on a wadmap.    For each linedef, WadAuthor
has to know which sector lies on each side.    If this information is corrupted, you will not be able to play your
map.

In the illustration below, I have joined one of the room’s linedefs to the hallway.

Creating A Local Door

One of the more common architectural features found in wadmaps is the local door.    A local door is one which
opens when the player walks up to it and triggers the “use” action.    WadAuthor simplifies the process of
creation by converting an existing sector into a local door.    The sector to be converted must have at least one
two-sided linedef that joins with a second sector.

The Hexen wadgame does not make a distinction between local and remote doors as the other wadgames
do.

In the illustration below, I have joined two additional sectors (one rectangular, one five-sided with a radius of
256) at the other end of the existing hallway and used paintbrush to circle the sector to be converted into a door.

Click the secondary mouse button on any sector meeting the requirements listed above and select the Convert
Sector To Door... option from the context menu.    The resulting dialog box will allow you to select how the door
should appear and behave.    In the illustration below, I have converted the previously circled sector to a door.   
Note that the east linedef’s front and back have been reversed.    This is very important!    Only the front side of a
linedef may be used to trigger a given action — this information will be more useful later on in the tutorial.

Providing An Exit

It’s always a good idea to provide a means by which the player can exit a given map and continue on to the
next.    Otherwise, the only way out is death!    To avoid jumping into more advanced topics right now, we’ll take
this opportunity to create our first sub-sector and set our first linedef actions.    We’re going to create an area
within the second room that ends the level when the player steps inside.

Place a new rectangular sector roughly in the center of the sector into which the door leads.    Because you
clicked the secondary mouse button within an existing sector, WadAuthor is smart enough to interpret this as a
request for a sector within a sector.    The new sector will automatically share the floor, ceiling, and lighting
attributes of its parent.

Remember that business about the front side of a linedef being the only side that can trigger actions?    Here’s
the first case where this is important.    The front sides of the linedefs in our sub-sector all face inward.    We’re
going to need to flip them if walking into the sub-sector is going to trigger an exit.

To flip the linedefs, click the secondary mouse button within the sub-sector and select the Flip Linedef(s)... option
from the context menu.    Select the Include textures and other data radio-button and press the OK button to
continue.    The linedefs should now be facing the correct direction.    All that remains is to configure them to exit
the map.

Click the secondary mouse button again within the sub-sector and select the Properties... option from the
context menu.    This will display the map object properties dialog.    This dialog box will be covered in greater
detail later on in the tutorial.    For now, make sure the linedefs page of the dialog is active by clicking the
Linedefs tab at the top.    Select Exit in the class listbox, select W1: end level, go to next in the type listbox, and
press the OK button.    The linedefs of our sub-sector are now configured to exit the map when the player steps
inside.

The Hexen wadgame does not use the same codes as the other wadgames.    When creating an exit for a
Hexen map, select Teleport in the class listbox and the Teleport_NewMap special in the type listbox.    Be sure to
enter the new map number and start position number for the first two special arguments.

In the illustration below, I have created a small rectangular sector within the second room as described in the
preceding paragraphs.

Playing The Map

Well, no doubt by now you’re getting tired of creating a new map — after all, the fun part is playing it!   
WadAuthor makes it very easy to test your new map without terminating your editing session.    Select the Run
Map... option from the Tools menu and, for now, press the OK button in all of the resulting dialog boxes.

WadAuthor will spawn a DOS session and invoke the wadgame specified in the current wadgame configuration
file with your new map.    Congratulations, you’re a WadAuthor!

Creating A Secret Room
{button ,KL(`Properties',0,`',`')}    List of Commands

A secret room is a sort of misnomer; it is usually the entrance to the room that is actually the secret.    Setting
semantic nitpicking aside, I have created a small map to illustrate making a secret room.    Consider the following
illustration.

The map above has a large hexagonal room with a door in its northeast wall that leads, through a hallway, into a
smaller pentagonal room.    Taking the following steps will make the smaller room a secret room.

n Change the door image (facing into the hexagonal room) to match the surrounding linedefs.
n Mark the door linedef (facing into the hexagonal room) as secret.
n Mark the pentagonal sector as secret.

Marking the linedef as secret will only work if the floor/ceiling height of the closed door sector is less than
or equal to the floor height of the room sector.    If the doorway is a step up from the room, the map will give away
the secret by showing the lines immediately beyond the door even before the door is first opened.

Creating A Remote Door
{button ,KL(`Creating A Local Door;Tags',0,`',`')}    List of Commands

Creating a remote door is a simple matter when using WadAuthor.    Create a local door, altering the appearance
as desired.    Invoke the tags dialog, create a new tag, and add the door sector and desired triggering linedef(s)
to the list of objects affected.    For help creating a normal door or using the tags dialog, consult the related
topics.

If you do not wish the player to be able to open remote door locally, be sure to set the door linedef types to
normal.

In the following illustration, I have added a single linedef to the map as a trigger for a secret door.    The linedef is
highlighted as the current object, and the remote door is highlighted as an object with the same tag number.

To add a single linedef to the map, I actually added a new rectangular sector and deleted three of the
linedefs.    Single linedefs can be a very effective way to provide special effects.

Creating A Teleporter
{button ,KL(`Interface;New Objects;Properties;Tags',0,`',`')}    List of Commands

A teleporter, in the most traditional sense (if a traditional sense can even be said to exist for something like this),
is a small (usually 64 units square) sub-sector whose linedefs have been set to cause teleportation when
crossed.    Creating a teleporter, however, also requires a teleport destination thing within a tagged sector.    The
following steps will create a teleporter platform and destination; for help with the details, consult the related
topics.

n Create a new rectangular sector, optionally setting the floor and ceiling textures or lighting conditions as a
visual cue to the player.    This will be the teleporter platform.

n Flip all of the linedefs in the new sector, including textures and other data.    To do this, select the new sector
and choose the Flip Linedef(s)... option from the context menu.

n Set the teleporter linedefs to the desired action.    To do this, edit the teleporter platform linedefs and select
the desired teleport type.

n Create the destination thing.    To do this, place a teleport destination within the sector to which the player
should be teleported.

n When creating a teleporter in Hexen, you must tag the teleporter platform linedefs to the destination thing.   
For all other games, you must tag the teleporter platform linedefs to the destination sector.    To do this, invoke
the tags dialog, create a new tag, and add the necessary objects to the list.

Always make sure the teleporter platform linedefs are facing the right way.    The teleport action occurs
when the player crosses the front side of a linedef.    In the above instructions, flipping all of the teleporter platform
linedefs will take care of this.

In the following illustration, I have added a teleporter to allow one-way passage between two otherwise
unconnected rectangular rooms.    As the player crosses into the teleporter platform at location one, he is
immediately teleported to the location and orientation of the destination thing at location two.

Note that the teleporter sector is aligned to match the 64 unit grid.    If the teleporter platform floor and
ceiling images have a specific pattern, this is necessary to make certain that the pattern appears correctly to the
player.    For more information about texture mapping, consult the related topics.

Creating A Staircase
{button ,KL(`Interface;New Objects;Stairs',0,`',`')}    List of Commands

WadAuthor automates the process somewhat by allowing you to specify the direction, number of steps, lighting
change, floor change, ceiling change, and the various images used to convert a pre-existing rectangular sector
into a staircase.    Taking the following steps will create a staircase.

n Create a rectangular sector in the desired location if none already exists.
n Select the sector to be converted, and choose the Convert Sector To Stairs... option from the context menu.
n Specify the desired number of steps, stair motif, and direction in the resulting convert sector to stairs dialog.

The orientation and attributes of the linedefs are preserved on all sides of the staircase.    This can be very
important for achieving special effects.

Creating A Rising Staircase
{button ,KL(`Interface;New Objects;Stairs;Tags',0,`',`')}    List of Commands

The Hexen wadgame has pre-defined specials for use in creating rising staircases.    The following
instructions do not apply to Hexen.

A rising staircase is a staircase that remains hidden until triggered by the player.    In architectural terms, it
consists of a series of adjacent sectors having certain properties.    The first step must be tagged to a linedef
whose type is set to raise stairs.    When the linedef is triggered, the staircase will rise.    For an adjacent sector to
rise when the linedef is triggered, the following conditions must be met.

n The sector must originally have the same floor height as the first step.
n The sector must be adjacent to a previous step, sharing a linedef with it.   
n The front side of the shared linedef must be facing the previous step, and the linedef must have a lower

number than any other linedef facing into the previous step.

Fortunately, WadAuthor makes this fairly simple.    The following step by step instructions create a rising
staircase.

n Create a rectangular sector within another sector.
n Select the new sector and flip all of its linedefs, including textures and other data.
n Convert the sector to stairs, selecting a motif that has a positive floor height change.
n Select the step sectors and reset their floor heights to that of the original sector.
n Tag the first step to the desired linedef and set the linedef type to raise stairs.

A couple of items are worth noting.    If a linedef along a side of the staircase faces into a given step sector and
has a lower number than any other linedefs in the sector, the results can be surprising.    The first step and the
surrounding sector will rise, but the remaining stairs will not move.    The easiest way to prevent this is by making
sure the sides face outward.    In the above procedure this is taken care of by flipping all the linedefs.

Always make sure that the last sector terminates the process.    This is most easily accomplished by making sure
that the last linedef faces out of the last step.    In the above procedure this is, once again, taken care of by
flipping all the linedefs.

Spiral staircases and other special effects can be achieved by moving the vertexes when finished.    Arranging
the vertexes in different patterns can make things very interesting for the player.    Of course, adding a few
nasties at the top of the staircase also works wonders...

If it seems silly to create a rising staircase only to set the floor heights back to the original value, it isn’t.   
WadAuthor analyzes the changing floor height to make sure all the required textures are in place.    Using a floor
height change of zero will save a single step at the cost of manually applying all of the required textures — without
the aid of the check map dialog.

Develop Around A Common Theme

I have played many different third-party maps, and the most enjoyable always have at least one thing in
common:    they are designed around a common theme.    In the same way that following the plot of a well-
constructed novel is enjoyable, your audience will appreciate it if your map has a sense of theme and continuity. 

A map with sector after sector filled with bad guys to kill and goodies to grab loses its appeal quickly.    A map
with puzzles to solve, traps to avoid, strategically placed architectural riddles, well-placed monsters, and
tactically interesting deathmatch layouts will keep the player coming back again and again.

Consider Multi-Player Modes

When I created my first map, I didn’t start thinking about multi-player modes until about halfway through the
process.    Because of this, I was unable to easily accommodate deathmatch play in my overall scheme.    When
designing a map to support multi-player modes, remember to keep asking yourself the following questions.

n Are there enough monsters, weapons, and goodies for each player?    Do deathmatch players have easy access
to weapons and ammunition near each starting location?

n If portions of your map can only be accessed by a specific sequence, do they cut deathmatch players off from
the rest of the world?

n Do you have any tricks or traps that require multi-player cooperation?    If so, do they make your map
impossible for single-player mode?

n Do your hallways and rooms have enough room for several players to maneuver?    Sometimes it can be fun to
keep the players from using those heavy weapons as the bad guys are pouring down on them, but it gets old
in a big hurry.

Understand The Third Dimension

One of the most enjoyable aspects of wadgame play for me is facing challenging architecture that makes good
use of the vertical dimension.    Secrets that can only be accessed through jumping, traps that can be avoided by
falling over a given linedef, or just making the player take a leap of faith into a dark pit can be very effective.   
Using these kinds of ideas effectively requires a little understanding, however, to avoid problems.

For starters, wadmaps are not really three-dimensional.    The three dimensional effect is achieved by specifying
differing altitudes for two dimensional sectors.    This has some important ramifications for the wadmap author.

n Things can be thousands of units apart in the vertical direction, but as far as the game is concerned, they’re
right next to each other.    An unseen enemy can tear a hapless player to shreds from far below because of
this.

n Negative altitudes are possible, but they affect the way certain linedef operations function.    For example,
linedefs that cause sectors to rise or fall to match the nearest floor or ceiling can be problematic.    It seems as
if the various game engines resolve the question of which sector is nearest in the positive vertical direction
only.    If a small sub-sector with a negative altitude is supposed to move down to a slightly lower nearest floor,
don’t be surprised if it shoots through the roof instead!

n Early versions of the DOOM engine (1.2 and before?) will crash if the difference between the floor and ceiling
altitude is greater than 1000.

Record A Demo

One of the easiest ways to provide help for your audience is to record a demo of your map.    The text files that
ship with the various wadgames describe the process of recording a demo.    Once the demo is finished, you need
to insert it into your wadfile with a resource name that varies among the different wadgames.

 What’s New?

This topic highlights the changes in each new release of WadAuthor.    The complete history can always be found
in the About WadAuthor topic, but simply knowing what changed doesn’t often help one use those new features.
You may click on any of the sections listed below to quickly jump to that section.

Overview
Bug Fixes
Improved Features
New Features

Overview
The latest release is a minor release.    As such, it fixes existing bugs and adds minor features without major
alterations from the user’s perspective.    The list of bug fixes, enhancements and new features follows.

Bug Fixes
n If an external wadfile is used for additional images, it will now be included when running the map.
n Fixed a focus problem with the image browser dialog incremental searching.

Improved Features
n Improved zoom under WindowsNT to a maximum of 400%.
n Improved zoom under Windows95 to a maximum of 250% by limiting map size to 16000 units square.
n Changed the tag dialog to center the map editing view on the selected object.
n Added the make column option to the new rectangular sector dialog and the new polygonal sector dialog.
n Added the current zoom setting to the status bar.
n The image browser dialog now appends an asterisk to the name of an image if it is not supplied by the main

wadfile.
n When running a map, WadAuthor will now create a response file for passing arguments if the command line

length is greater than the operating system allows.

New Features
n Added panning on Ctrl+Shift primary click.    This feature allows the user to scroll the map view by grabbing a

location and dragging rather than by using the scroll bars.
n Added the run map dialog for customizing options immediately prior to launching the game.
n Added the tip of the day dialog to provide on-going help and amusement.
n A special version of the WTF Productions DOOM and DOOM][Editing Guide is now included with WadAuthor.

Why Does The Hall Of Mirrors Effect Happen?

As briefly explained in the glossary, this refers to the effect caused by a sidedef without a texture when played
within a wadgame.    I do not know exactly why it happens (you’d probably have to ask the father of the gaming
engine), but reproducing it is, unfortunately, rather easy.

Usually, when you see the hall of mirrors effect, you have a sidedef being viewed from above its ceiling or below
its floor without a corresponding texture.    The various wadgame engines seem to handle this by not handling it,
resulting in the aptly-named hall of mirrors effect.

Why Can’t I Just Draw Lines On The Map?

Truthfully, you could if I had taken a different direction in constructing WadAuthor.    My favorite wad editor (prior
to WadAuthor of course — shameless plug, eh?) allowed the user to create sectors by drawing the linedefs.    I
got tired of clicking all over the place just to draw a single sector, and I decided that my editor would work
differently.    I found myself thinking in terms of rooms and the connections between them most of the time; that
dictated how WadAuthor works.

There is, actually, another good reason as well:    sectors are referenced by sidedefs through linedefs.   
Maintaining the proper internal data structures in the program was greatly simplified by allowing WadAuthor to
do the sector construction.    I’m hoping that most people will prefer WadAuthor’s methods just as I do.

Why Won’t WadAuthor Run With A Sixteen Color Video Driver?

WadAuthor extracts images from the wadgame’s main wadfile, and these images are in a 256 color format.   
While it is a fairly simple thing to display them in color depths greater than 256, it would require the use of a
dithering algorithm to present the images in 16 colors with even minimal quality.    Because any computer
capable of running the wadgames is capable of 256 color presentation, I have chosen to avoid the time spent
both in development and speed of execution by requiring a minimum of 256 simultaneous colors.

Why Is There No Sound When Running A Map?
{button ,KL(`Configuration Files',0,`',`')}    Related Topics

The WadAuthor configuration files disable the sound by default to avoid problems.    If you are running
WadAuthor under Windows95, however, it is quite possible that your hardware is capable of providing sound.    To
test this, edit the wadgame configuration file with notepad, or some other text editor, and remove the -nosound
option from the Run entry in the Wadgame section.

Be sure to make a backup of the original configuration file before editing it.

Can I Customize The Game Graphics?
{button ,KL(`Custom Images',0,`',`')}    Related Topics

While WadAuthor does not supply any native functions for creating new images or altering existing images, there
are several utilities available that do so.    WadAuthor will support the use of additional images through various
configuration settings (for more information, consult the related topics).

Document Images Dialog
{button ,KL(`Custom Images;Properties',0,`',`')}    Related Topics

The document properties dialog images page, shown in the illustration below, allows the user to configure how
additional images will be handled.    By default, WadAuthor will use any images located within the current
document.    Using a separate wadfile for additional images is supported by checking the appropriate option and
supplying the filename.

Document Resources Dialog
{button ,KL(`Properties',0,`',`')}    Related Topics

The document properties dialog resources page, shown in the illustration below, allows the user to browse the
list of resources, also known as lumps, in the current document.

Using Custom Images
{button ,KL(`Custom Images',0,`',`')}    Related Topics

WadAuthor supports the use of additional images not present in the main wadgame wadfile.    When a wadfile is
opened, WadAuthor will default to using any images contained within the wadfile adding to or overriding the
images contained in the main wadgame wadfile.    If the custom images for a given wadfile are contained in a
separate wadfile, for whatever reason, you must tell WadAuthor which wadfile to use for the additional images.   
You may configure how WadAuthor uses custom images via the document properties dialog.

 Click here for step by step instructions.

The images applied to linedef sidedefs (usually called textures) are actually composed of a number of smaller
images (usually called wall patches) which are referenced by number.    This allowed the original game designers to
avoid wasting space within the main wadfile.

If additional textures are supplied without a corresponding list of panels, WadAuthor will provide a warning
message.    If the panels present in the main wadgame wadfile are sufficient to create each texture, no problems will
occur.    If, however, the new textures require new panels, WadAuthor will not be able to display the images.    If the
warning message appears, it is strongly suggested that you include the panels in the wadfile containing the
additional textures.

How To Use Custom Images

1 Open the wadfile for which custom images are needed.
2 Choose the Properties option from the Edit menu to display the document properties dialog.
3 Change to the Images page if necessary.
4 Select the desired image handling option.    If using images in an external wadfile, be sure to specify a valid file

name.

How To Change The Colors

1 Choose Options from the Tools menu to display the options dialog.
2 Change to the Colors page if necessary.
3 To change a color, double-click its entry in the list, or select it and press the Set Color button.

How To Make A Door

1 Create and select a new sector (or select an existing sector) to become the door.
2 Click the sector with the secondary mouse button to display the context menu.
3 Choose the Convert Sector To Door option from the context menu.
4 Select a motif to be used for creating the door and press the OK button.

Note:
If the context menu does not provide the conversion option, make sure you have a single sector selected and
make sure it connects to at least one other sector via a two-sided linedef.

How To Make A Staircase

1 Create and select a new sector (or select an existing sector) to become the staircase.
2 Click the sector with the secondary mouse button to display the context menu.
3 Choose the Convert Sector To Stairs option from the context menu.
4 Select a motif to be used for creating the stairs and press the OK button.

Note:
If the context menu does not provide the conversion option, make sure you    have a single four-sided sector
selected.

How To Align Textures

1 Select the linedefs whose textures need to be aligned.
2 Click one of the selected linedefs with the secondary mouse button to display the context menu.
3 Choose the Align Textures option from the context menu.
4 Configure the options for sizing information and press the OK button.

Tip:
The first texture in the selected list is used for sizing options.

How To Make A Teleporter

1 Select the linedef(s) that should cause the teleport.
2 Click the linedef(s) with the secondary mouse button to display the context menu.
3 Choose the Properties option from the context menu.
4 Set the linedef type to perform the desired teleport operation and press the OK button.
5 Click the secondary mouse button within the desired destination sector to display the context menu.
6 Choose the New Thing option from the context menu.
7 Configure the thing to be a teleport destination and press the OK button.
8 Tag the linedef(s) that cause(s) the teleport to the destination sector.

How To Make A Lift

1 Select the linedef(s) that should trigger the lift.
2 Click the linedef(s) with the secondary mouse button to display the context menu.
3 Choose the Properties option from the context menu.
4 Set the linedef type to perform the desired lift operation and press the OK button.
5 Tag the linedef(s) that cause(s) the lift to the lift sector.

Note:
A lift drops down to the nearest floor before rising to its previous position; thus, the lift sector floor must start
above the surrounding floor.

How To Tag Objects

1 Click one of the objects to be tagged with the secondary mouse button to display the context menu.
2 Choose the Edit Tags option from the context menu.
3 If the object has no tag, press the Yes button when asked if a new tag should be assigned.
4 Once the tags dialog is displayed, click the other objects to be tagged with the primary mouse button to add

them to the list.

Note:
If you make a mistake and add an undesired item to the list, click it again with the primary mouse button and
it will be removed from the list.

How To Edit Objects

1 Select the objects to be edited.
2 Click one of the selected objects with the secondary mouse button to display the context menu.
3 Choose the Properties option from the context menu.
4 Modify the object parameters in the resulting dialog(s) and press the OK button.

How To Select Objects

n To select a single object, click it with the primary mouse button.
n To add or remove an item from the selection, click it with the primary mouse button while holding down the

ctrl key.
n To select a range of objects, click and hold the primary mouse button while holding down the shift key; this will

begin a rubberband selection.    Drag and release the mouse button to select objects within the rectangle or
press the escape key to abort the operation.    If you do not drag, the object clicked will be added to the
selection.

Tip:
If you’re having trouble isolating a single object, try holding down the alt key while clicking; this will provide a
list of the objects nearest to the cursor position.

How To Create Objects

1 Click the secondary mouse button roughly where the object should be centered to display the context menu.
2 Choose the appropriate option to create a new rectangular sector, polygonal sector, or thing.
3 Configure the object parameters in the resulting dialog box and press the OK button.

Invalid File Name

This error message means that the program cannot use the file name you have supplied.    This is usually due to
one of the following reasons.

n The name itself is not a valid file name.
n A file having the given name could not be found.
n The file exists but does not contain valid data.

Please check the file name, and try again.

Set Linedef Length(s) Dialog

The linedef length dialog, shown in the illustration below, allows the user to set the length of the selected lines.   
The anchor is used to determine from which point on the linedef the length will be set.    The three options are
explained below.

n Center means that the linedef length will be adjusted around the current center point.
n From vertex means that the linedef length will be adjusted from the from vertex.
n To vertex means that the linedef length will be adjusted from the to vertex.

This feature can have unexpected results when used with multiple connected linedefs.    When adjusting
linedef lengths, the operation proceeds through the selection list one linedef at a time.    If any two of the selected
linedefs are connected, the vertex connecting them will be adjusted twice.

Make Linedefs Parallel Dialog

The make linedefs parallel dialog box, shown in the illustration below, allows the user to specify options for
making one linedef parallel to another.    The anchor is used to specify a point on the master linedef with which
the moving linedef will be aligned, if any.    The four options are explained below.

n Center means that the moving linedef will be aligned with the center of the master linedef.
n From vertex means that the moving linedef will be aligned with the from vertex of the master linedef.
n To vertex means that the moving linedef will be aligned with the to vertex of the master linedef.
n None means that the moving linedef will be rotated around its current center as necessary.

When using an anchor, the distance field will be used to determine how far from the master linedef the moving
linedef should be positioned.    For example, when the anchor to center is used, the distance will be the distance
from the center of the master linedef to the center of the moving linedef.

Tip Of The Day Dialog

The tip of the day dialog, shown in the illustration below, provides helpful hints for using WadAuthor and
understanding life in general.

Run Map Dialog

The run map dialog, shown in the illustration below, allows the user to customize the game options when running
a map.    For more information about the additional parameters available for each game, consult the game
manual and third party documentation available elsewhere.

To bypass the run map dialog and use the default options, hold down the shift key when invoking the run
command.

